Abstract:
A solar tracker system including a tracker apparatus including a plurality of solar modules, each of the solar modules being spatially configured to face in a normal manner in an on sun position in an incident direction of electromagnetic radiation derived from the sun, wherein the solar modules include a plurality of PV strings, and a tracker controller. The tracker controller includes a processor, a memory, a power supply configured to provide power to the tracker controller, a plurality of power inputs configured to receive a plurality of currents from the plurality of PV strings, a current sensing unit configured to individually monitor the plurality of currents, a DC-DC power converter configured to receive the plurality of power inputs powered from the plurality of PV strings to supply power to the power supply, and a motor controller, wherein the tracker controller is configured to track the sun position.
Abstract:
A light detection device includes a diffraction element and a light detection element. The diffraction element diffracts a beam of light that is incident on the diffraction element. The light detection element includes light receivers to receive diffracted light. The diffraction element generates beams of the diffracted light by dividing the beam of light. The light detection element determines a displacement of the beam of light relative to the diffraction element on the basis of quantities of light of the beams of the diffracted light. The light detection element determines an angle change of the beam of light relative to the diffraction element by dividing the quantity of light of one of the beams of the diffracted light.
Abstract:
A laser beam is transmitted from a laser system to a shelving system by pointing the laser beam towards at least one label attached to the shelving system, by a computer system, using angular information of the laser beam relative to a reference frame. An angle between the laser system on the ceiling of the store to the position of the shelving system is determined by the computer system using the position of the laser system and the position of the shelving system. The laser beam is then transmitted from the laser system to the shelving system and pointed using the determined angle between the laser system on the ceiling of the store to the position of the shelving system. The laser is aimed at the x, y location where a label should be displayed, for example, according to the planogram for the store layout. If the label is not detected at the specified location, the discrepancy may be noted, for example, with a visual or other notification.
Abstract:
A method and apparatus are provided to control artificial lighting using accurate geographical location, date and time, in order to activate such electrical activity only during needed periods of actual terrestrial darkness related to sun elevation. Accurate, real-time calculation of sun elevation relative to geographical location and date/time allow natural lighting characteristics such as natural light spectrum and intensity to be matched to artificial lighting, in order to provide a smooth transition in ambient lighting and to save energy. An apparatus according to the invention comprises a global positioning system (GPS) element for determining latitude, longitude, altitude, date and time and a calculation element for determining sun elevation angle accurately. A specific embodiment requires only desired sun elevation angle inputs from the user for controlling electrical switches in a control system.
Abstract:
A system and a method, as well as a positioning and wearable devices for determining the distance and position of devices communicating with each other over a medium, the system, are disclosed. At least one remote device comprises first processing unit, at least one transmitter functionally connected to the first processing unit and adapted to transmit signals over a medium, and at least one receiver functionally connected to the first processing unit and adapted to receive signals over said medium. At least two wearable devices, each comprising a second processing unit and wireless communication means capable of receiving and sending data signals over said medium, are also provided. The remote device is adapted to determine the distance to at least two wearable devices, to determine the direction to said at least two wearable devices based on at least two different bearings taken from said at least one remote device to each wearable device, to calculate the position of said at least two wearable devices relative to the remote device, and to communicate the position of at least one first wearable device to a second wearable device. The wearable devices are adapted to process the position of a first wearable device in their processing unit and to present to the user of a second wearable device an indication of direction and distance to said first wearable device.
Abstract:
An angle-sensitive pixel (ASP) device that uses the Talbot effect to detect the local intensity and incident angle of light includes a phase grating disposed above a photodiode assembly or a phase grating disposed above an analyzer grating that is disposed above a photodiode assembly. When illuminated by a plane wave, the upper grating generates a self-image at a selected Talbot depth. Several such structures, tuned to different incident angles, are sufficient to extract local incident angle and intensity. Arrays of such structures are sufficient to localize light sources in three dimensions without any additional optics.
Abstract:
A tracking device for use when performing astrophotography comprises a guider camera and at least one tilt stage, with the topmost of the tilt stages arranged to support an astrophotography camera and the guider camera. Actuators are coupled to the tilt stages such that the astrophotography and guider cameras can be tilted about three axes. The guider camera and actuators are connected to electronics which include a computer programmed to operate in a calibration mode and a tracking mode. In calibration mode, a calibration procedure determines the effect of each actuator on the positions of at least two objects within the field-of-view (FOV) of the guider camera. In tracking mode, the actuators are operated as needed to maintain the positions of the at least two objects constant within the said FOV.
Abstract:
Methods of connecting or linking real objects to machines or the virtual world in real time utilizing a device are disclosed. In one embodiment, a wireless tag attached to an object in communication with an electronic device, such as a cellular phone, tablet computer, laptop computer, or watch, monitors and updates the position of a wireless tag locally and on a machine/network/cloud. Methods of using a wireless tag in safety, loss/theft prevention, healthcare, tracking, advertising and marketing, education, games, finance, payment, and athletic are disclosed. In another embodiment, methods of providing an application programming interface and/or a software development kit based on the devices are provided, allowing software developers the ability to create their own programs or applications on top of the disclosed system is disclosed. Methods of allowing developers to distribute and/or monetize applications developed through the application programming interface and/or a software development kit are also disclosed.
Abstract:
An optical sensor arrangement includes two sensors arranged one behind the other. The operational spectral ranges of the sensors match, and the first sensor forms an attenuation filter for the second sensor, which is arranged behind the first sensor.
Abstract:
A mobile field controller, together with a geodetic surveying device, forms a one-person measurement system for geodetic position determination. The field controller allows the spatial orientation of the field controller to be determined. The field controller supports a geodetic target object and has a distance-measuring unit that measures the distance between the field controller and a target point, the distance being optically marked by the field controller, as a result of which a 3D point cloud is generated without physical contact to a target point. When surveying a specific terrain region, algorithms analyzing the 3D point cloud are saved in a control and evaluation unit of the field controller. The absolute position of the target point is calculated from the data of the spatial orientation of the field controller, the distance between field controller and target point and the absolute position of the geodetic target object.