摘要:
The invention relates to a cooling system (1) comprising at least: a Stirling heat pump (2) designed to cool an inlet gas (Ge) down to a cryogenic temperature so as to form a cryogenic liquid (L), a primary electric motor (3), intended to put said Stirling heat pump (2) into operation, a primary pump (4) intended to cause said cryogenic liquid (L) to circulate under pressure, and a cooling means (5) intended to cool said primary electric motor (3) with the aid of the cryogenic liquid (L) output by said primary pump (4). The invention is particularly suitable for the production of a cryogenic liquid and the applications thereof.
摘要:
The extrusion device of a solid film comprises a cell provided with an input opening of a material designed to form the solid film, and an output opening of the solid film from the cell. The device comprises a first heat exchanger for applying a first temperature to the output opening and a second heat exchanger for applying a second temperature in a first zone of the cell distinct from the output opening and a control circuit imposing first and second sets of first and second temperatures. The first set enables a volume of the material in solid phase to be formed. The second set enables a temperature gradient to be generated in the volume so as to generate a pressure forcing extrusion of the solid film via the output opening.
摘要:
A cryogenic insulation system is proposed comprising enclosing at least a portion of a cryogenic device with low density high conductivity insulation material. The cryogenic device may be an air separation unit. The cryogenic device does not include an outer containment structure for granulated cryogenic insulation. The low density high conductivity insulation material may consists of at least one layer of abutting or overlapping low density high conductivity insulation material composite with fibrous batting. The portion of the cryogenic device is selected from the group consisting of: a distillation column, a heat exchanger, a condenser, a reboiler, an expansion turbine, valves, piping, or any combination thereof.
摘要:
A Dewar system is configured to liquefy a flow of fluid, and to store the liquefied fluid. The Dewar system is disposed within a single, portable housing. Disposing the components of the Dewar system within the single housing enables liquefied fluid to be transferred between a heat exchange assembly configured to liquefy fluid and a storage assembly configured to store liquefied fluid in an enhanced manner. In one embodiment, the flow of fluid liquefied and stored by the Dewar system is oxygen (e.g., purified oxygen), nitrogen, and/or some other fluid.
摘要:
This invention presents improved combustion methods, systems, engines and apparatus utilizing H2, O2 and H2O as fuel, thereby providing environmentally friendly combustion products, as well as improved fuel and energy management methods, systems, engines and apparatus. The Water Combustion Technology; WCT, is based upon water (H2O) chemistry, more specifically H2O combustion chemistry and thermodynamics. WCT does not use any hydrocarbon fuel source, rather the WCT uses H2 preferably with O2 and secondarily with air. The WCT significantly improves the thermodynamics of combustion, thereby significantly improving the efficacy of combustion, utilizing the first and second laws of thermodynamics. The WCT preferably controls combustion temperature with H2O and secondarily with air in the combustion chamber. The WCT preferably recycles exhaust gases as fuel converted from water. The WCT minimizes external cooling loops and minimizes exhaust and/or exhaust energy, thereby maximizing available work and internal energy while minimizing enthalpy and entropy losses.
摘要:
The present invention provides an active gas regenerative liquefier (AGRL) for efficiently cooling and liquefying a process stream based on the combination of several active gas regenerative refrigerator (AGRR) stages configured to sequentially cool and liquefy the process stream, e.g. natural gas or hydrogen. In specific embodiments, the individual AGRR stages include heat exchangers, dual active regenerators, and a compressor/expander assembly, configured to recover a portion of the work of compression of a refrigerant by simultaneously expanding a refrigerant in one portion of the device while compressing the refrigerant in another portion to effect cooling of a heat transfer fluid, and ultimately the process stream.
摘要:
Apparatus and methods for improving the safety and efficiency and decreasing the cost of producing liquid oxygen with a small-scale use liquefaction device, according to various embodiments of the present invention. In one embodiment, a switch is electrically coupled to a storage dewar pressurizing means, the switch positioned to be activated by a portable dewar upon engagement of portable dewar with storage dewar. Cryocooler and/or cooling fan enter low power mode when dewar liquid level reaches a predetermined level, and to return to a fall power mode when dewar liquid level drops to another predetermined level. A cold finger of the cryocooler extends within the dewar and may prevent overfilling of the dewar. The cold finger has a temperature gradient. As the gas liquefies and fills the dewar, the liquid level rises only to a level on the cold finger at which the temperature exceeds the boiling point of oxygen.
摘要:
A cryogenic gas is liquefied using a refrigeration system [101] thermally coupled at an evaporator [125] to a cold end of a gas supply system [103] within a dewar [116]. The refrigerator has a minimum temperature at an evaporator [125] above the boiling point of the gas at atmospheric pressure but below the boiling point of the gas at a high pressure. Thus, the gas is compressed [128] to high pressure so it condenses when cooled by the evaporator [125]. As it expands at a flow restrictor [148], a portion evaporates and cools a fraction to the temperature of the boiling point of the gas at atmospheric pressure, producing liquefied gas. Opening a purge valve [142] sends warm gas upward through heat exchange section [146] and out through a three-way valve [138] for defrosting. To reduce clogging, the gas supply valve [138] is controlled by a gas purity sensor [158].
摘要:
Apparatus and methods for improving the safety and efficiency and decreasing the cost of producing liquid oxygen with a small-scale use liquefaction device, according to various embodiments of the present invention. In one embodiment, a switch is electrically coupled to a storage dewar pressurizing means, the switch positioned to be activated by a portable dewar upon engagement of portable dewar with storage dewar. Cryocooler and/or cooling fan enter low power mode when dewar liquid level reaches a predetermined level, and to return to a fall power mode when dewar liquid level drops to another predetermined level. A cold finger of the cryocooler extends within the dewar and may prevent overfilling of the dewar. The cold finger has a temperature gradient. As the gas liquefies and fills the dewar, the liquid level rises only to a level on the cold finger at which the temperature exceeds the boiling point of oxygen.
摘要:
A system and process for liquefying or storing gases at low temperatures using a cold recovery system. The system and process includes a cold recovery system having at least one cold recovery vessel configured to receive a gas stream and cool the gas stream by passing the gas stream through a cold recovery vessel. The cold recovery vessels includes a cold recovery material configured to cool the cooled gas stream, wherein the gas stream is fed through the cold recovery vessel through a pipe immersed in the cold recovery material to produce a liquefied or low temperature gas. The liquefied or low temperature gas is stored in a liquid or low temperature state in a storage tank. When the liquefied or low temperature gas is released from the storage tank, the gas vaporizes or expands through the pipe and cools the cold recovery material.