Abstract:
A method and system for cooling a process fluid is disclosed. An inlet air stream of a turbine is cooled with an inlet air cooling system. Moisture contained in the cooled inlet air stream is condensed and separated from the cooled inlet air stream to produce a water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
Abstract:
A method for storage and transport of LPG on LPG carriers, in particular two cargoes of different LPG types on same shipment, having reliquefaction units in which vaporized gases are condensed and then returned into at least one cargo tank for the respective LPG cargo type. The method is further comprising: using the reliquefaction units, at a minimum one running, as to condense vapour from the first cargo type; passing the condensed vapour through a heat exchanger; simultaneously flowing vapour from the second cargo type through the heat exchanger as to condense vapour by means of heat exchanging with the condensed vapour; and returning the condensed vapours leaving the heat exchanger back into the respective cargo types. The present invention is also disclosing a system for storage and transport of LPG on LPG carriers.
Abstract:
A method and associated system for regulation of the cooling capacity of a cooling system that uses a gas expansion cooling circuit where the cooling principle is expansion of one or more gaseous cooling medium streams from a higher pressure to a lower pressure are described, characterised by the following steps: —reducing the amount of cooling medium which is circulated in the cooling circuit (100) temporarily in that a fraction of gaseous cooling medium is pre-cooled at a higher pressure and is extracted from the cooling circuit (100), —expanding the fraction of cooled gaseous cooling medium across an expansion device (102) to a lower pressure so that at least one part of liquid cooling medium separates, —separating the liquid from the non-condensed gas for temporary storage in a storage unit (104) so that the liquid is temporarily not circulated in the otherwise closed cooling circuit (100), —thereafter to return temporarily stored gaseous cooling medium from the storage unit (104) to the cooling circuit (100) according to need, and—returning non-condensed gas and evaporated cooling medium from the storage unit (104) to a suitable location in the cooling circuit (100). A system to reduce the cooling capacity of a cooling installation based on gas expansion cooling, is also described.
Abstract:
A method for storage and transport of LPG on LPG carriers, in particular two cargoes of different LPG types on same shipment, having reliquefaction units in which vaporized gases are condensed and then returned into at least one cargo tank for the respective LPG cargo type. The method is further comprising: using the reliquefaction units, at a minimum one running, as to condense vapour from the first cargo type; passing the condensed vapour through a heat exchanger; simultaneously flowing vapour from the second cargo type through the heat exchanger as to condense vapour by means of heat exchanging with the condensed vapour; and returning the condensed vapours leaving the heat exchanger back into the respective cargo types. The present invention is also disclosing a system for storage and transport of LPG on LPG carriers.
Abstract:
A process for the drying of gases which are routed through two or more gas coolers connected in series. The coolers being supplied with a solvent stream absorbing water from the gas entering the respective cooler, with a mixed stream consisting of gas and solvent entering each of these gas coolers, then being routed through the respective cooler and, after joint cooling in the respective cooler, being separated by a gas/liquid separator in the outlet of the respective cooler into a gas stream of reduced water content and a solvent stream laden with water. The water content of the gas is successively reduced from the first cooler to the last cooler and the solvent stream separated and laden with water being either used as feed stream for the upstream cooler or directly returned to the solvent regeneration unit where the water-enriched solvent is again freed from water.
Abstract:
Gases, e.g., helium, are treated to freeze out impurities in the form of liquid and solids, and resultant gases are liquefied in a refrigerating unit. For automatic control of the freeze purification system, control of this process is responsive to two performance figures, namely, the liquefaction performance of refrigerating unit and the degree of impurities in the available crude gas. The purification process comprises an alternating sequence of purification phases A and regeneration phases B. The amount of gas used in regeneration phase B for liquefaction is additionally produced in purification phase A and intermediately stored in a medium-pressure buffer vessel. The sequence of purification phases A and regeneration phases B is continued up to a pressure P.sub.Mmax in the buffer vessel. Once this pressure is reached, the freeze purification system is regenerated; then, in an idle phase C, the pressure in the buffer vessel is reduced to P.sub.Mmin by liquefaction of the gas. Then the sequence of purification phases A and regeneration phases B starts again.
Abstract:
Refrigeration system including a multi-stage compressor and two work expansion engines of the turbine type with the impellers of the expansion engines and the impeller of the final stage of the compressor being mounted on a common shaft. The work developed in the expansion engines provides the total power required for the final stage of the compressor and the final stage of the compressor provides the pressurized gas expanded in both expansion engines.
Abstract:
A system and method for producing liquefied natural gas (LNG) from a natural gas stream. Each of a plurality of LNG trains liquefies a portion of the natural gas stream to generate a warm LNG stream in a first operating mode, and a cold LNG stream in a second operating mode. A sub-cooling unit is configured to, in the first operating mode, sub-cool the warm LNG streams to thereby generate a combined cold LNG stream. The warm LNG streams have a higher temperature than a temperature of the cold LNG streams in the second operating mode and the combined cold LNG stream. The combined cold LNG stream has, in the first operating mode, a higher flow rate than the flow rate of the cold LNG streams in the second operating mode.
Abstract:
A system and method for producing liquefied natural gas (LNG) from a natural gas stream. Each of a plurality of LNG trains liquefies a portion of the natural gas stream to generate a warm LNG stream in a first operating mode, and a cold LNG stream in a second operating mode. A sub-cooling unit is configured to, in the first operating mode, sub-cool the warm LNG stream to thereby generate a combined cold LNG stream. The warm LNG stream has a higher temperature than a temperature of the cold LNG stream and the combined cold LNG stream. The combined cold LNG stream has, in the first operating mode, a higher flow rate than a flow rate of the cold LNG stream in the second operating mode.