Abstract:
A method for the liquefaction of an industrial gas by integration of a methanol plant and an air separation unit (ASU) is provided. The method can include the steps of: (a) providing a pressurized natural gas stream, a pressurized purge gas stream composed predominately of hydrogen and originating from a methanol plant, and a pressurized air gas stream comprising an air gas from the ASU; (b) expanding three different pressurized gases to produce three cooled streams, wherein the three different pressurized gases consist of the pressurized natural gas stream, the pressurized purge gas stream, and the pressurized air gas stream; and (c) liquefying the industrial gas in a liquefaction unit against the three cooled streams to produce a liquefied industrial gas stream, wherein the industrial gas to be liquefied is selected from the group consisting of a first portion of the pressurized natural gas stream, a nitrogen gas stream, hydrogen and combinations thereof
Abstract:
A water intake assembly (105) is suspendable from an off-shore structure (102) is proposed. It has a bundle (106) of at least a first tubular conduit (106A) and a second tubular conduit (106B) generally stretching side by side along a length direction. At least a part of the distal portion (109) of the first tubular conduit extends further in the length direction than the second tubular conduit when in fully suspended condition. Described used of such a water intake riser assembly include: a method of producing a liquefied hydrocarbon stream and a method of producing a vaporous hydrocarbon steam.
Abstract:
Cryogenic liquefying/refrigerating method and system, wherein temperature of gas-to-be-liquefied at the inlet of the compressor for compressing the gas is reduced by cooling the gas discharged from the compressor using a high-efficiency chemical refrigerating machine and vapor compression refrigerating machine before the gas is introduced to a multiple stage heat exchanger thereby reducing power input to the compressor and improving liquefying/refrigerating efficiency. Gas-to-be-liquefied compressed by a compressor is cooled by aftercooler, and further cooled by an adsorption refrigerating machine which utilizes waste heat generated in the compressor and by an ammonia refrigerating machine 40, then the high pressure gas is introduced to a multiple-stage heat exchanger where it is cooled by low pressure low temperature gas separated from a mixture of liquid and gas generated by adiabatically expanding the high pressure gas through an expansion valve 30 and returning to the compressor, and a portion of the high pressure gas is expanded adiabatically by expansion turbines in mid-course of flowing of the high pressure gas through the stages of the heat exchanger to be joined with the low pressure low temperature gas returning to the compressor.
Abstract:
Systems and methods for using a multi-stage compressor to increase the temperature and pressure of BOG sent to a heat exchanger for cooling a separate liquid refrigerant. The subsequent stage(s) of the multi-stage compressor further compress the BOG, which is then recycled to a liquefaction unit or used as fuel gas for one or more turbines.
Abstract:
Systems and methods for natural gas liquefaction capacity augmentation using supplemental cooling systems and methods to improve the efficiency of a liquefaction cycle for producing liquefied natural gas (LNG).
Abstract:
A deep-water intake system includes a water intake duct (7) which is connected to a turret (4) of a turret-moored vessel (1). The turret (4) is used as a swivel for the large-diameter deep-water intake duct (7) while the vessel can freely weathervane around the turret.
Abstract:
A support structure that is either floatable or otherwise adapted to be disposed in an offshore location at least partially above sea level. A natural gas liquefaction system is located on or in the support structure and has a series of heat exchangers for cooling the natural gas in a countercurrent heat exchange relationship with a refrigerant. One or more compressors compress the refrigerant which is divided into two separate streams. Each stream is fed to a liquid expansion turbine where it is isentropically expanded. The expanded streams of refrigerant are then fed to the cool end of one of the heat exchangers.
Abstract:
A boil-off gas recovery system 1 includes a tank 2 storing liquefied gas, an oil supply type compressor 3b for compressing boil-off gas generated by partial evaporation of the liquefied gas in the tank 2, and a reliquefying system 9 for liquefying the boil-off gas compressed by the oil supply type compressor 3b and returning the liquefied gas that has been liquefied to the tank 2. The reliquefying system 9 includes a heat exchanger for oil constituent condensation 11 for cooling down the boil-off gas to a temperature equal to or lower than a condensation temperature of an oil constituent contained in the boil-off gas, a separator 14 for separating the oil constituent condensed by the heat exchanger for oil constituent condensation 11 from the boil-off gas, and a reliquefying portion for liquefying the boil-off gas from which the oil constituent is separated.
Abstract:
A water intake assembly (105) is suspendable from an off-shore structure (102) is proposed. It has a bundle (106) of at least a first tubular conduit (106A) and a second tubular conduit (106B) generally stretching side by side along a length direction. At least a part of the distal portion (109) of the first tubular conduit extends further in the length direction than the second tubular conduit when in fully suspended condition. Described used of such a water intake riser assembly include: a method of producing a liquefied hydrocarbon stream and a method of producing a vaporous hydrocarbon steam.
Abstract:
The invention relates to a process for liquefying a gas stream rich in methane, said process comprising: (a) providing said gas stream; (b) withdrawing a portion of said gas stream for use as a refrigerant; (c) compressing said refrigerant; (d) cooling said compressed refrigerant with an ambient temperature cooling fluid; (e) subjecting the cooled, compressed refrigerant to supplemental cooling; (f) expanding the refrigerant of (e) to further cool said refrigerant, thereby producing an expanded, supplementally cooled refrigerant; (g) passing said expanded, supplementally cooled refrigerant to a heat exchange area; and, (h) passing said gas stream of (a) through said heat exchange area to cool at least part of said gas stream by indirect heat exchange with said expanded, supplementally cooled refrigerant, thereby forming a cooled gas stream. In further embodiments for improved efficiencies, additional supplemental cooling may be provided after one or more other compression steps.