Abstract:
A mount for a double-walled vessel includes a first support to support the mount against an outer wall of the double-walled vessel, a second support to support the mount against an inner wall of the double-walled vessel, and a flexible member connecting the first support and the second support. The first support and can be arranged at a first end of the flexible member and the second support can be arranged at a second end of the flexible member opposite to the first end. Further described are a vessel including at least one such mount as well as a vehicle including such vessel.
Abstract:
An insulation arrangement configured to cover a vessel containing a liquified gas is provided. Embodiments include an insulation arrangement including an aerogel composition and a vapor barrier, where the insulation arrangement reduces heat transfer between the ambient environment and the liquified gas. Other embodiments include an insulated clamping device configured to connect a vessel to a framework and a connection system including the insulated clamping device, where the vessel includes the aforementioned insulation arrangement.
Abstract:
Storage systems and methods of manufacturing and using the same. A storage tank is provided with an inner vessel, an outer vessel, and a support system between the vessels. The support system may comprise a repeating pattern of openings that effectively lengthens the heat path between the inner and outer vessels.
Abstract:
A storage tank 10A has a heat insulating material layer 14 formed on the outer side of a partition wall 12 that has a container shape. The inside of the storage tank 10A is divided into two storage spaces V1, V2. The first storage space V1 stores liquefied hydrogen LH2 and the second storage space V2 storing slush hydrogen SH2. A plurality of fins 18 are disposed on the partition plate 16 so as to promote heat transfer between the liquefied hydrogen LH2 and the slush hydrogen SH2 and to reduce the amount of evaporation gas from the liquefied hydrogen LH2. An escape pipe 20 is connected to the storage space V1, and the fuel supply pipes 24a, 24b are connected to the storage spaces V1, V2, respectively. The fuel supply pipes 24a, 24b are connected to a combustor 26 via the main fuel pipe 24.
Abstract:
The invention relates to a marine vessel cryogenic barrier which is formed of a plurality of individual panels, each panel being arranged to align with an adjacent panel on an inner surface of a hold space of a marine vessel and comprising a single coupling means at the centre of the panel and an impervious layer on a surface of the barrier facing the hold space.
Abstract:
A storage tank includes a tank roof and a tank sidewall. At least one opening is located in at least one of the tank roof or the tank sidewall. A pipe extends through the at least one opening, the pipe having a sleeve assembly positioned around the pipe. The sleeve assembly also extends through the opening. The sleeve assembly includes a sleeve, at least one layer of insulation, and an inner flange. The inner flange is located on a first end of the sleeve and is coupled to the pipe. The sleeve, in turn is coupled to the tank such that the inner flange is located within the storage tank. The at least one layer of insulation is positioned in an annulus between the pipe and the sleeve.
Abstract:
A hydrogen storage tank for a hydrogen fueled aircraft. The tank has a wall made of layers of aerogel sections around a hard shell layer, sealed within a flexible outer layer, and having the air removed to form a vacuum. The periphery of each layer section abuts other sections of that layer, but only overlies the periphery of the sections of other layers at individual points. The wall is characterized by a thermal conductivity that is lower near its gravitational top than its gravitational bottom. The tank has two exit passageways, one being direct, and the other passing through a vapor shield that extends through the wall between two layers of aerogel. A control system controls the relative flow through the two passages to regulate the boil-off rate of the tank.
Abstract:
A liquefied gas storage tank includes: an inner shell storing a liquefied gas; an outer shell forming a vacuum space between the inner shell and the outer shell; and a fail-safe thermal insulating layer covering an outer side surface of the outer shell. According to this configuration, the fail-safe thermal insulating layer is not disposed in the vacuum space. This makes it possible to suppress the degradation over time of the degree of vacuum in the vacuum space.
Abstract:
A sealed and thermally insulated tank arranged in a bearing structure (1) to contain a fluid, said tank comprising walls fixed to said bearing structure, a tank wall having a primary sealed barrier, a primary insulating barrier, a secondary sealed barrier and a secondary insulating barrier, the tank comprising a through-element arranged through the tank wall, in which tank the tank wall around the through-element comprises: secondary insulating blocks arranged on the wall of the bearing structure around the through-element and being covered by a first sealed layer forming the secondary sealed barrier, a circular plate arranged parallel to the tank wall at the same level as the first sealed layer forming the secondary sealed barrier, a second sealed layer (723a-d) fixed in a sealed manner straddling the first sealed layer and the circular plate all around the circular plate.
Abstract:
A storage system, including an outer casing having an evacuated inner volume; a vessel for storage located within the outer casing and having a plurality of protrusions distributed on an outer surface thereof; and a plurality of filamentary strands spanning the inner volume, wherein at least some of the plurality of protrusions are essentially tangentially contacted by a plurality of the filamentary strands to secure the vessel in six degrees of freedom relative to the outer casing.