Abstract:
A liquefied gas storage tank includes a corner block disposed on a corner portion, wherein the corner block includes a lower block, an upper block and an upper connecting block, the upper block includes a first inner fixing unit and a second inner fixing unit respectively provided inside a first surface and a second surface, bonded and connected to a secondary barrier, and each having a structure in which a primary inner plywood, a primary corner insulating material, and a primary outer plywood are stacked, and an inner bent portion installed at a corner spatial portion between the first inner fixing unit and the second inner fixing unit, and both side surfaces of the inner bent portion that are perpendicular to the secondary barrier each have a height reduced from a total height of each of the first and second inner fixing units.
Abstract:
A cryogenic container for a vehicle for storing a fluid includes an inner container having an inner space for storing the fluid, an outer container disposed to surround the inner container and having a heat insulation space configured to suppress heat transfer to the inner container, the heat insulation space being formed between the inner container and the outer container, and a reinforcement part configured to support the outer container in the heat insulation space to reinforce the outer container.
Abstract:
A transport container for helium, with an inner container for receiving the helium, a coolant container for receiving a cryogenic liquid (N2), an outer container, in which the inner container and the coolant container are contained, a thermal shield, in which the inner container is contained and which can be actively cooled with the aid of a liquid phase of the cryogenic liquid (LN2), the thermal shield having at least one first cooling line, in which the liquid phase of the cryogenic liquid can be received for actively cooling the thermal shield, and an insulating element, which is arranged between the outer container and the thermal shield and which can be actively cooled with the aid of a gaseous phase of the cryogenic liquid (GN2), the insulating element having at least one second cooling line, in which the gaseous phase of the cryogenic liquid can be received.
Abstract:
An apparatus for storing and transporting a cryogenic fluid. The apparatus is carried onboard a ship. The apparatus including a sealed and thermally insulating tank intended for the storage of the cryogenic fluid in a state of liquid-vapor diphasic equilibrium, the apparatus including at least two sealed pipes passing through the tank in such a way as to define a passage for the removal of the vapor phase of the cryogenic fluid from inside to outside the tank, the two sealed pipes each including a collection end opening inside the tank at the level of the sealing membrane of the top wall. The collecting ends of two sealed pipes open to the inside of the tank at the level of two zones of the top wall which are situated at two opposite ends of the top wall.
Abstract:
The disclosure relates to a sealed and thermally insulating tank for storing a fluid, said sealed tank comprising an outer support structure, a thermal insulating barrier retained on the support structure, and a sealing barrier supported by the thermal insulating barrier. In one embodiment, the thermal insulating barrier comprises a corner structure positioned at an intersection between a first and a second wall of the support structure, the corner structure comprising a first and a second insulating panel, each having an outer surface positioned facing the support structure, an inner surface provided with a member for securing the sealing membrane, and lateral edges, the first panel having an outer surface resting against the first wall of the support structure and a lateral edge resting against the second wall of the support structure, the second panel having an outer surface resting against the second wall of the support structure and a lateral edge resting against the outer surface of the first panel.
Abstract:
The present invention relates to: a liquefied natural gas (LNG) storage tank, which has insulating wall securing devices for the LNG storage tank installed at the optimum position, thus is stable with respect to thermal contraction, and may require a minimum number of insulating wall securing devices; and an insulating wall securing device for an LNG storage tank. One embodiment of the present invention provides a storage tank for storing LNG therein, comprising: a first sealing wall coming into contact with the LNG stored in the storage tank, for liquid-tight sealing the LNG; a first insulating wall; a second insulating wall disposed in the inner wall of the storage tank; a plurality of first insulating wall securing devices for securing the first insulating wall and the second insulating wall, wherein the plurality of first insulating wall securing devices are provided at the vertex of the first insulating wall.
Abstract:
A cryogenic tank includes a membrane anchor mechanism which fixes a membrane provided on an inner wall surface side of a concrete wall via a heat insulating material to the concrete wall, a pressing par which is provided by the membrane anchor mechanism and presses the membrane from the inside of the cryogenic tank, and an interposition part which is interposed between the pressing part of the membrane anchor mechanism and the membrane, and includes a first abutment surface coming into surface-contact with the pressing part and a second abutment surface coming into surface-contact with the membrane.
Abstract:
The disclosure relates to a corner structure which is suitable for a sealed and thermally insulating tank for storing a fluid comprising a secondary thermal insulation barrier which is retained on a carrier structure, a secondary sealing membrane, a primary thermal insulation barrier and a primary sealing membrane which is intended to be in contact with the fluid contained in the tank, the corner structure comprising: a first panel and a second panel forming a corner of the secondary thermal insulation barrier, and comprising an external face intended to move opposite the carrier structure and an internal face; a corner arrangement of the secondary sealing membrane, which arrangement is fixed to the first and second panels; a first insulating block and a second insulating block of a primary thermal insulation barrier which are fixed to the first and second panels, respectively, and which rest against the corner arrangement of the secondary sealing membrane; and a corner of a primary sealing barrier comprising a first wing and a second wing which are fixed to the first and second insulating blocks, respectively:
Abstract:
A membrane anchor mechanism which fixes a membrane provided on an inner wall surface side of a concrete wall via a heating insulating material to the concrete wall, includes a rod-shaped leg portion which is erected on the concrete wall, an anchor which is supported by the leg portion in a state of being separated from the concrete wall and is inserted into a through-hole passing through the heat insulating material and the membrane, and a pressing part which is fixed to the anchor through the through-hole and presses the membrane.
Abstract:
A sealed and thermally insulative tank includes thermal installation including a plurality of juxtaposed insulation blocks on the supporting structure and a seal including a plurality of sealing metal plates disposed on the insulation blocks and welded to each other. Mechanical coupling members extend through the thermal insulation at the level of the edges of the insulation blocks and hold the insulation blocks in bearing engagement on the supporting structure. The metal plates are disposed so that the edges of the metal plates are offset relative to the edges of the underlying insulation blocks. The metal plates are held in bearing engagement on the insulation blocks only by the coupling members. The mechanical coupling members are attached to the metal plates at the level of attachment points away from the edges of the metal plates.