Abstract:
A blast furnace facility includes a process for capturing and sequestering CO2 generated from the facility process, generating hydrogen from hot blast furnace gas, and using blast furnace gas as methanol feed. The CO2 rich streams from the facility are sent to sequestration of some form via a sequestration compressor, thereby reducing the overall emissions from the facility. The other products generated by the facility are used as methanol feedstock and to produce hydrogen.
Abstract:
Systems and methods for increasing the efficiency of liquefied natural gas (LNG) production, as well as facilitating coproduction of electric power, and compressed natural gas (CNG) are described. The systems and methods facilitate producing an intermediate LNG at a higher temperature, recovering refrigeration from flash gas and boil-off gas from the LNG, using flash-gas and boil-off gas as fuel to generate electric power, and providing LNG, CNG, and electric power to a vehicle fueling facility.
Abstract:
Embodiments generally relate to a motor driven compressor (MDC) power network electrically isolated and independent from a balance of plant (BOP) power network within an electrical power system and methods for operating the same. In one embodiment, the MDC power network can include one or more MDC trains, and each of the MDC trains can include an MDC distribution bus, one or more MDC turbine generators, one or more electric motors, and one or more compressors. The BOP power network can include a BOP distribution bus, one or more BOP turbine generators, and one or more plant circuits comprising the balance of the plant.
Abstract:
The invention relates to an integrated process for continuous production of liquid hydrogen, comprising (a) producing gaseous hydrogen by electrolysis; and (b) liquefying said gaseous hydrogen in a hydrogen liquefaction unit, which liquefaction unit is powered by energy essentially from renewable sources; and, (c) when additional power is needed, using electrical energy generated in a process in which electrical energy and hydrogen are co-generated by an integrated electrolysis process comprising: (d) electrolysing a metal salt or mixture of metal salts and water into the corresponding metal or metals, acid or acids, and oxygen (electricity storage phase), and (e) producing gaseous hydrogen and recovering electricity in a regeneration reaction of the metal (s) and acid(s) of step (d) (regeneration phase); wherein at least part of the gaseous hydrogen generated in step (e) is used in step (b) of the process.
Abstract:
Methods and apparatuses for liquefying hydrocarbon streams are provided. In one embodiment, a method for liquefying a hydrocarbon stream includes expanding the hydrocarbon stream with a turbo expander to form an expanded hydrocarbon stream. The method includes compressing a first refrigerant with the turbo expander. Further, the method includes cooling the expanded hydrocarbon stream with the first refrigerant to form a liquid hydrocarbon stream.
Abstract:
A method for producing liquefied natural gas (LNG) and separating natural gas liquids (NGLs) from the LNG is provided. The method may include compressing natural gas to compressed natural gas, removing a non-hydrocarbon from the compressed natural gas, and cooling the compressed natural gas to a cooled, compressed natural gas. The method may also include expanding a first portion and a second portion of the cooled, compressed natural gas in a first expansion element and a second expansion element to generate a first refrigeration stream and a second refrigeration stream, respectively. The method may further include separating a third portion of the cooled, compressed natural gas into a methane lean natural gas fraction containing the NGLs and a methane rich natural gas fraction. The methane rich natural gas fraction may be cooled in a liquefaction assembly with the first and second refrigeration streams to thereby produce the LNG.
Abstract:
A process for liquefying natural gas by; a) causing it to flow through three series connected heat exchangers, where gas is cooled to T3; T3 is less/equal to the liquefaction temperature of natural gas at atmospheric pressure; and b) causing the closed circuit circulation of a first stream of refrigerant gas at a pressure P1 lower than P3 entering the third exchanger and leaving the first exchanger, the first stream obtained using a first expander to expand a first portion of a second stream at P3 higher than P2, the second stream flowing relative to the natural gas stream entering the first exchanger and leaving the second exchanger; and a third stream at a pressure P2 higher than P1 and lower than P3 flowing relative to the first stream, entering the second exchanger and leaving the first exchanger; c) the second stream at the pressure P3 obtained by compression.
Abstract:
An integral compressor-expander assembly, including a cryogenic expander positioned in an overhung configuration on a central shaft; a multi-stage centrifugal compressor supported on the central shaft between at least two bearings; and a device coupled to the central shaft and configured to either supply rotational power to the central shaft or generate power from rotation of the central shaft, depending upon a current operational mode of the multi-stage compressor.
Abstract:
A compressor starting torque converter method and apparatus for high power rotating equipment strings includes a compressor starting torque converter (CSTC) (16) and gearing to make the input and output speed conform to the speed and power requirements of the at least one compressor (4) at the end of the string. The string also includes a prime mover (10), either a motor or gas turbine with a starter motor. The CSTC is driven by a prime mover that has been geared down (via 18) to an appropriate speed for efficient power transfer, followed by a gear increasing unit (20) to allow the output of the CSTC to be increased to conform to the necessary requirements of a high speed compressor. The gearing can be two separate units with their own housings, or incorporated in a single housing with the CSTC. The CSTC may be a CSTC used in pressurized starts high compressor load strings for LNG refrigeration service.
Abstract:
Normal operation of an oxygen liquefaction system (100) may be established responsive to a deviation in current supplied thereto. Current being supplied to a compressor (118) included in the oxygen liquefaction system may be monitored. The compressor may be deactivated responsive to commencement of a current level deviation event in the monitored current. The compressor may be energized responsive to cessation of the current level deviation event in the monitored current. Performance characteristics of the oxygen liquefaction system may be identified.