Abstract:
A damper assembly includes a housing. A method of forming a damper assembly includes extruding the housing formed of aluminum. The housing defines a first chamber and a first passage spaced from each other, with a first inlet fluidly connecting the first chamber and the first passage. A piston is disposed in the first chamber and is movable in a first direction and a second direction opposite the first direction. A first restrictor valve is disposed in the first passage. The first restrictor valve is configured to restrict a flow of liquid into the first passage from the first chamber and the first inlet as the piston moves in one of the first and second directions which causes the liquid in the first chamber to increase a pressure applied to a first side of the piston to dampen movement of the piston.
Abstract:
In a movement damping apparatus, a magnetorheological fluid is pressed through a flow path. A device generating a variable magnetic field comprises a core around which a coil is wound as well as pole surfaces in the flow path, the magnetic field acting on the magnetorheological fluid by way of said pole surfaces. The coil is arranged within the flow path along with the core, the axis of the coil extending perpendicular to the direction of flow of the magnetorheological fluid. The flow path has a jacket made of a magnetically conducting material.
Abstract:
A magneto-rheological (MR) damping system for preventing stratification of MR fluid is disclosed. The MR damping system has a housing, a piston, and a stir band. The piston operably reciprocates within the housing and includes a circumferential portion. The circumferential portion has a groove. The stir band is disposed in the groove of the piston and includes an outer periphery and a plurality of flexible protrusions. The flexible protrusions have a head portion and a tail portion. The head portion is fixed to the outer periphery. The tail portion extends from the head portion and is disjointed from the outer periphery and is substantially flexible relative to the head portion. Therefore, the stir band diverts a flow of MR fluid in one of a clockwise or a counter-clockwise direction about the circumferential portion of the piston, during a reciprocatory movement of the piston.
Abstract:
Shock absorber and method for operating a shock absorber for a bicycle wherein a relative motion of a first and a second component interconnected via a damper device is dampened. The damper device includes a controllable damping valve having at least one field generating device with which a field-sensitive medium can be influenced by applying a field intensity of the field generating device. A parameter for the current speeds of the first and second components relative to one another is obtained in real time. For damping, a current field intensity to be set is derived in real time by way of the parameter from a characteristic damper curve and by the field generating device the field intensity to be currently set is generated in real time for setting in real time a damping force which results from the predetermined characteristic damper curve at the parameter obtained.
Abstract:
Shock absorber for an at least partially muscle-powered bicycle having a damper device having a first and a second damper chamber assigned thereto which are hydraulically coupled with one another through a damping valve. In the damping valve a flow duct with a field-sensitive, rheological medium is provided. The damping valve has a field generating device assigned to it which serves for generating and controlling a field intensity in the flow duct of the damping valve. The flow duct comprises in the damping valve a collection chamber which is hydraulically connected with the first damper chamber through a plurality of flow apertures, wherein at least one flow aperture is configured as a through hole and at least one flow aperture, as a closable valve opening provided with a one-way valve. The collection chamber is hydraulically connected hydraulically with the second damper chamber via a plurality of fan-type damping ducts each separated from one another by a fan wall.
Abstract:
A movement damping apparatus has a flow path through which a magnetorheological fluid is pressed. A device that generates a variable magnetic field has a core around which a coil is wound as well as pole surfaces in the flow path. The magnetic field acts on the magnetorheological fluid by way of the pole surfaces. The coil is arranged within the flow path along with the core, the axis of the coil extending perpendicular to the direction of flow of the magnetorheological fluid. The flow path has a jacket made of a magnetically conducting material.
Abstract:
An energy absorbing device is provided that includes a damper assembly having inner and outer concentric tubes and a piston movable within the inner tube. The damper assembly is configured to form bi-fold valve-type cavities to operatively connect an inner chamber of the inner tube with an outer chamber formed between the inner and outer tubes. A magnetorheological fluid fills the chambers and the bi-fold valve-type cavities. The magnetorheological fluid preferably contains coated magnetic particles at about 10 to 60 percent by volume. Electrical coils adjacent the bi-fold valves are selectively energizable to such that the energy absorbing device provides a tunable damping force, preferably over the entire range of velocities of the piston, especially in automotive applications.
Abstract:
In a controllable damping force shock absorber, a piston member connected to a piston rod is disposed in a cylinder in which a magnetic fluid is contained. A disc valve having an extension-stroke pressure-receiving portion and a compression-stroke pressure-receiving portion is provided in the piston member, and a pilot chamber is formed on a rear side of the disc valve. A coil is provided adjacent to passages communicated with the pilot chamber. By energizing the coil, a magnetic field that acts on the magnetic fluid flowing through the passages is generated, changing the viscosity of the magnetic fluid to control a damping force. A valve-opening pressure of the disc valve is controlled according to the pressure in the pilot chamber, such a way that the magnetic fluid exposed to the magnetic field can flow at a low flow rate, thus achieving low power consumption.
Abstract:
A magneto-rheological damping device comprises a core element capable of acting as a magnetic circuit which carries a magnetic flux, and a case element surrounding a portion of the core element. A passage exists between the case element and core element, and an amount of magneto-rheological fluid is positioned between the core element and case element to flow within the passage. A magnetic flux generator is positioned adjacent a portion of the core element and is operable to generate a magnetic flux which acts upon the magneto-rheological fluid in the passage to affect the flow of fluid in the passage. The core element comprises a plurality of stacked laminations, which form a series of individual magnetic poles with gaps therebetween. The magnetic flux generator is operable to generate a magnetic flux in the poles and case element and across the gaps to affect the fluid flow in the passage.
Abstract:
A door component has a controllable damping device containing a magnetorheological fluid as a working fluid. Two connection units can move relative to one another. One of the two connection units can be connected to a support structure and the other of the two connection units can be connected to a moveable door unit of a vehicle in order to damp a movement of the door unit between a closed position and an open position under control of a control device. The damping device has an electrically adjustable magnetorheological damping valve which is current-less in its adjusted state. A damping property of the damping device is continuously adjusted as needed via an electrical adjustment of the damping valve.