摘要:
An Extensile Fluidic Muscle Actuator (FMA) that changes the normal direction of force and motion, achieving compressive force generation and extensile motion output with just a small increase in friction, weight, and cost is disclosed. The motion conversion is accomplished by a pushrod that is attached to the inside end of one of the actuator's end fittings, and extends through the actuator body and slidably out through the other end fitting. The other end fitting is held stationary by a seal housing that contains a sealing element to retain internal fluid pressure as the actuator moves. A linear bearing may also be installed to keep the rod aligned and centered properly in the seal. Upon pressurization of the actuator, the flexible body of the actuator will expand radially, causing relative contractile motion between the two end fittings. However, as the two end fittings are drawn towards each other, the pushrod is extended.
摘要:
An adaptive energy absorption system for a vehicle seat is disclosed, utilizing an adaptive energy absorber or variable profile energy absorber (VPEA) for mitigating occupant injury due to extreme vehicle movement (e.g., during a vehicle shock event), and/or for mitigating vibration experienced by an occupant of the vehicle seat during normal vehicle operating conditions. Various configurations of dual-goal energy absorption apparatuses using both VPEA and fixed load energy absorbers (FLEAs) that enable both shock mitigation and vibration isolation are disclosed. A semi-active control absorption system, comprising a VPEA and FPEA configured to work in series, is also disclosed.
摘要:
A magnetorheological fluid damping system includes a hydraulic cylinder, a piston head, a piston rod, and a porous valve. The hydraulic cylinder is configured for disposing magnetorheological fluid therein. The piston head is disposed within the hydraulic cylinder and has first and second sides defining first and second chambers within the hydraulic cylinder. The piston head is configured to be in sliding engagement with the hydraulic cylinder. The piston rod is connected to the piston head. The porous valve includes a magnetorheological fluid pathway, has first and second fluid connections, and is configured to dampen the flow of the magnetorheological fluid between the first and second fluid connections in accordance with a magnetic field. The first fluid connection is fluidly connected to the first chamber and the second fluid connection is fluidly connected to the second chamber. The magnetorheological fluid pathway at least partially directs magnetorheological fluid flow through a porous media.
摘要:
A compact and failsafe magnetorheological energy absorber design including both a light weight piston (LWP) embodiment in which linear motion is subjected to a linear damping force, and a light weight rotary vane (LWRV)embodiment in which linear motion is converted into rotary motion and is subjected to a rotary damping force. Both embodiments allow increased damper stroke within a compact mechanical profile. A new lightweight Magnetorheological energy attenuation system (LMEAS) for a vehicle seat is also disclosed using the new LMRW MREA.
摘要:
An actuation system for trailing-edge flap control suitable for use in reducing vibration in rotorcraft blades as well as primary flight control and noise mitigation employing an antagonistic pair of fluidic artificial muscles (FAMs) located and operated inside the rotor blade. The FAMs are connected to a force transfer mechanism such as an inboard bellcrank and engaged to an outboard bellcrank by one or more linkages running spanwise out through the spar. The outboard mechanism translates the spanwise linkage motion into chordwise motion of a flap control rod which is connected to the trailing-edge flap. A torsion rod flexure (TRF) device is included connecting the trailing-edge flap to the blade. The actuation system can produce large flap deflections at relatively high operating frequencies for vibration reduction and noise cancellation and is capable of larger flap deflections at lower operating frequencies for embedded primary control of the rotorcraft.
摘要:
An adaptive energy absorption system for a vehicle seat that functions in dual-modes, including a primary mode during severe (shock event) operation and a secondary mode during normal (non-shock event) operation. When operating in primary mode, the present system automatically adjusts a VPEA in real-time to keep loads transmitted to the occupant's body below acceptable injury threshold levels, and can recover to perform said function for multiple shock events. When operating in secondary mode the system reduces vehicle vibration transmitted to the occupant, thereby reducing fatigue and increasing situational awareness.
摘要:
A method of designing a magnetorheological (MR) fluid energy absorbing damper is provided that uses hydromechanical analysis with lumped parameters to allow a determination as to whether a potential damper design will provide predetermined characteristics, such as a desired dynamic force range and maximum piston velocity, with a selected MR fluid and yield stress and preferably meeting predetermined geometric limitations.
摘要:
An adaptive energy absorption system for a vehicle seat is disclosed, utilizing an adaptive energy absorber or variable profile energy absorber (VPEA) for mitigating occupant injury due to extreme vehicle movement (e.g., during a vehicle shock event), and/or for mitigating vibration experienced by an occupant of the vehicle seat during normal vehicle operating conditions. Various configurations of dual-goal energy absorption apparatuses using both VPEA and fixed load energy absorbers (FLEAs) that enable both shock mitigation and vibration isolation are disclosed. A semi-active control absorption system, comprising a VPEA and FPEA configured to work in series, is also disclosed.
摘要:
An Extensile Fluidic Muscle Actuator (FMA) that changes the normal direction of force and motion, achieving compressive force generation and extensile motion output with just a small increase in friction, weight, and cost is disclosed. The motion conversion is accomplished by a pushrod that is attached to the inside end of one of the actuator's end fittings, and extends through the actuator body and slidably out through the other end fitting. The other end fitting is held stationary by a seal housing that contains a sealing element to retain internal fluid pressure as the actuator moves. A linear bearing may also be installed to keep the rod aligned and centered properly in the seal. Upon pressurization of the actuator, the flexible body of the actuator will expand radially, causing relative contractile motion between the two end fittings. However, as the two end fittings are drawn towards each other, the pushrod is extended.
摘要:
A fluidic artificial muscle actuator consisting of an inner elastic bladder surrounded by a braided filament sleeve and sealed off on either end with end fittings. Pressurization of the actuator produces force and/or motion through radial movement of the bladder and sleeve which forces the sleeve to move axially. Both contractile and extensile motions are possible depending on the geometry of the braided sleeve. The fluidic artificial muscle actuator is manufactured using a swaging process which plastically deforms swage tubes around the end fittings, braided sleeve, and pressure bladder, creating a strong mechanical clamping action that may be augmented with adhesive bonding of the components. The swaging system includes the swaging die and associated components which are used to plastically deform the swage tube during assembly of the actuator.