Abstract:
A door component has a controllable damper device that contains a magnetorheological fluid as a working fluid. Two connection units of the damper device can be moved relative to each other. One of the two connection units can be connected to a support structure, and the other connection unit can be connected to a pivotal door device in order to damp a movement of the door device between a closed position and an open position in a controlled manner. The magnetorheological damper device has a piston unit and a cylinder unit which surrounds the piston unit. The piston unit divides a cylinder volume into two chambers. The piston unit has a first piston rod, which extends through the first chamber, and a second piston rod, which extends through the second chamber.
Abstract:
A method for damping a movement of a door system of a vehicle that is equipped with a damping system having an adjustable and controllable damping action. A movement of the door system between a closed position and an open position is damped in a controlled manner. A measurement of the change in speed of the speed of movement of the door system is calculated and if the change in speed exceeds a predefined limit value, a set, gentle damping action is changed over to a greater damping action.
Abstract:
The rotary inertial mass damper has a configuration in which the rotary shaft of the oil-pressure motor rotates due to oil pressure of operating oil that is extruded from an oil chamber through reciprocating movement of the piston rod, and viscosity resistance is produced in operating oil that circulates in the connection pipes.
Abstract:
Gliding board with a damping device for the vertical movements of the front or rear zone of the board said system including an arm whose first end is integral with an attaching point located in the front or rear zone of the board and whose second end is integral with the piston of a hydraulic device connected to the board near the attachment, said hydraulic device applying a retaining force during the movement of the second end of the arm in order to dissipate part of the kinetic energy from the front or rear zone of the board transmitted by said arm, wherein when the movement of the arm is consecutive to the movement of the attaching point downwards, the hydraulic device applies a retaining force which is less than the force applied when the movement of the arm is consecutive to a movement of the attaching point upwards.
Abstract:
A seismic isolation mechanism includes a seismic isolation apparatus which is installed at one end in a vertical direction on a superstructure and installed at another end 4 in the vertical direction on a floor serving as a foundation or a substructure to isolate the vibration of the superstructure with respect to the floor; a first attenuation damper which is connected to the superstructure and connected at another end a portion of the seismic isolation apparatus to attenuate the vibration of the superstructure with respect to the floor; and a second attenuation damper.
Abstract:
Gliding board with a damping device for the vertical movements of the front or rear zone of the board said system including an arm whose first end is integral with an attaching point located in the front or rear zone of the board and whose second end is integral with the piston of a hydraulic device connected to the board near the attachment, said hydraulic device applying a retaining force during the movement of the second end of the arm in order to dissipate part of the kinetic energy from the front or rear zone of the board transmitted by said arm, wherein when the movement of the arm is consecutive to the movement of the attaching point downwards, the hydraulic device applies a retaining force which is less than the force applied when the movement of the arm is consecutive to a movement of the attaching point upwards.
Abstract:
Embodiments of a fluid damper are provided, as are embodiments of an Auxiliary Power Unit inlet system including a fluid damper. In one embodiment, the fluid damper includes a housing assembly containing first and second hydraulic chambers, which are fluidly coupled by way of a flow passage. A plunger is slidably disposed within the housing assembly and is moves through a range of translational positions in response to variations in damping fluid pressure when the fluid damper is filled with damping fluid. An annulus or other restricted flow path is fluidly coupled between the first and second hydraulic chambers and is at least partially defined by the flow passage and the plunger. The restricted flow path has at least one dimension, such as a length, that varies in conjunction with the translational position of the plunger.
Abstract:
A shock absorber includes a cylinder portion, a piston rod portion arranged as a single member, a pair of protruding members protruding from an outer circumferential surface of the piston rod portion, and a piston valve assembly having the piston rod portion passing therethrough. The piston valve assembly includes a piston portion, a valve element, and a threaded portion arranged to extend or contract in an axial direction as a result of rotation of a female thread portion relative to a male thread portion. The piston valve assembly is arranged such that the piston portion and the valve element are retained to the piston rod portion so as not to move with respect to the axial direction of the piston rod portion by a stretching force generated between the pair of protruding members due to extension of the threaded portion.
Abstract:
A shock absorber is attached coaxially with a reciprocating rod driven by a reciprocating unit to prevent a bending moment from being applied to the reciprocating rod in absorbing an impact force. The shock absorber has a hollow rod and an outer cylindrical body mounted axially movably relatively to and outside the hollow rod. An accommodating space is formed between the hollow rod and the outer cylindrical body. The hollow rod carries an annular piston, which partitions the accommodating space into two liquid chambers. A compression spring biases the outer cylindrical body toward one end of the hollow rod. When an impact forces the outer cylindrical body toward the other end of the hollow rod, liquid flows from one of the liquid chambers to the other through a gap, so that a resistance force is applied to the annular piston.
Abstract:
A suspension system for use with a motorcycle includes a single body having two pneumatic cylinders in axial alignment therein. The suspension system may be sold in a kit, and may be installed in an existing front wheel fork.