Abstract:
An electric oil pump for automobile transmission clutch engagement includes: a temperature sensor that measures a temperature of oil supplied to an oil supply destination relating to clutch engagement of an automobile transmission; an oil pump drive motor; a current determination part that determines a current value output to the oil pump drive motor to a predetermined current value determined such that the oil pump drive motor is capable of being driven without stopping in a case where the temperature is equal to or less than a predetermined temperature at which a torque of the oil pump drive motor becomes smaller than a load of the oil pump drive motor; and an oil pump that supplies oil to the oil supply destination by the oil pump drive motor being driven based on the determined current value.
Abstract:
A method of operating an accessory drive system for a motor vehicle, wherein the accessory drive system includes one or more accessory components, a motor generator of the motor vehicle, and a flexible drive element configured to transmit a torque load between the one or more accessory components and the motor generator, includes determining a maximum permissible flexible drive element torque threshold, detecting an increase in torque demand on the flexible drive element, determining when the torque demand on the flexible drive element will exceed the flexible drive element torque threshold, and reducing the torque demand of one or more of the accessory components so that the flexible drive element torque threshold is not exceeded.
Abstract:
A method of controlling the operating mode of a motor vehicle includes transitioning between driving and coasting modes and vice-versa automatically in response to a driver trigger. The method controls an engine of the motor vehicle to bring a driveline driven by the engine via an electronically controlled clutch into a lash state before engaging or disengaging the electronically controlled clutch thereby preventing driveline disturbances from being produced by the transition.
Abstract:
A method of regulating a clutch assembly that has a set of clutch plates and a clutch piston with a fluid seal in an automatic transmission that includes a hydraulic circuit is disclosed. The method includes commanding the hydraulic circuit via the controller to apply a first hydraulic force to the clutch piston to displace the clutch piston relative to the set of clutch plates in order to affect a shift between speed-ratios in the transmission. The method also includes determining a drag force of the fluid seal. The method also includes determining a velocity of the displaced clutch piston that results from the drag force of the fluid seal acting counter to the displacement of the clutch piston. The method additionally includes regulating the clutch assembly to compensate for the determined drag force of the fluid seal acting counter to the displacement of the clutch piston.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
To downsize the periphery of reaction force applying device of a clutch controller, and set operation load more freely, in a clutch control system that links the clutch controller and a clutch device electrically, an operation reaction force is applied to a clutch lever, from reaction force applying device that uses a spring as a reaction force generation source; the reaction force applying device includes multiple reaction force generation cylinders arranged parallel to one another; and the clutch lever has an input/output arm, which extends toward an input/output part of each of the multiple reaction force generation cylinders from the vicinity of a lever support shaft, to allow transmission of operating force and reaction force between the clutch lever and the reaction force applying device.
Abstract:
The invention relates to a method for controlling a drivetrain having an internal combustion engine, a dual-clutch transmission, having a first and second sub-transmission having at least one shiftable gear ratio, a first friction clutch disposed between the internal combustion engine and the first sub-transmission and a second friction clutch disposed between the internal combustion engine and the second sub-transmission to provide a drivetrain torque at a transmission output of the dual-clutch transmission by transferring an engine torque adjusted thereto via the friction clutches. So as to be able to continue operating a friction clutch which may have a previously damaged friction lining, at a first clutch torque transferred via the first friction lining, depending on a friction coefficient and a current temperature of a second friction lining of the second friction clutch, the second friction clutch is engaged at a gear ratio selected in the second sub-transmission and the friction lining is heated to a specified temperature.
Abstract:
The invention relates to a method for controlling a friction clutch in a drive train of a motor vehicle by means of a clutch actuator on the basis of a clutch model, in which method a nominal characteristic curve of the clutch moment which is transmitted via the friction clutch is adapted continuously to actual operating parameters. In order to counteract a loss of comfort of the motor vehicle, which is caused by the running-in behavior, for example, of the friction linings of the friction clutch, the friction clutch is operated by way of different sets of operating parameters during a running-in phase and in a run-in phase of the friction clutch.
Abstract:
A torque-transmitting system such as continuously variable transmission for motor vehicle has an input device and an output device whose operating state can be described in terms of characteristic operating values. The input device and the output device are adjustable in relation to each other by adjusting a ratio between characteristic operating values, which has the result of changing the transmission ratio. An actuator device performs the functions of shifting the positions of the input and output device as well as holding the devices at a set position. A control device controls the actuator device through a control signal. A computing device performs calculations as well as learning and adapting processes involved in setting the value of the control signal.
Abstract:
The disclosure relates to a method for producing various variants of a series of an electrically operable actuation system for actuating components which can be connected into and/or disconnected from a drive train of a motor vehicle. The actuation system comprises a drive unit, a transmission unit, and a control unit. The actuation system is assembled from a modular kit including the following components: a first group of first drive units, at least a second group of second drive units, a first group of first transmission units, at least a second group of second transmission units, a first group of first control units, and a second group of second control units. The groups of the drive units, the groups of the transmission units and/or the groups of the control units can be mechanically and electrically coupled to each other.