Abstract:
A method may include applying a layer comprising a carbon source on a surface of a substrate including silicon; applying a layer comprising silicon on the layer comprising elemental carbon; and heat treating at least the layer comprising the carbon source to cause carbon from the layer comprising the carbon source to react with at least one of silicon from the substrate or silicon from the layer comprising silicon to form silicon carbide.
Abstract:
A blade includes a blade body extending from a blade root to an opposed blade tip surface along a longitudinal axis. The blade body defines a pressure side and a suction side. The blade body includes a cutting edge defined where the tip surface of the blade body meets the pressure side of the blade body. The cutting edge is configured to abrade a seal section of an engine case. A method for manufacturing a blade includes forming an airfoil with a root and an opposed tip surface along a longitudinal axis, wherein the airfoil defines a pressure side and a suction side. The method also includes forming a cutting edge where the tip surface of the airfoil meets the pressure side of the airfoil.
Abstract:
A blade includes a blade body extending from a blade root to an opposed blade tip surface along a longitudinal axis. The blade body defines a pressure side and a suction side. The blade body includes a cutting edge defined where the tip surface of the blade body meets the pressure side of the blade body. The cutting edge is configured to abrade a seal section of an engine case. A method for manufacturing a blade includes forming an airfoil with a root and an opposed tip surface along a longitudinal axis, wherein the airfoil defines a pressure side and a suction side. The method also includes forming a cutting edge where the tip surface of the airfoil meets the pressure side of the airfoil.
Abstract:
A plated polymer component is disclosed. The plated polymer component may comprise a polymer substrate having an outer surface, and a metal plating deposited on the outer surface of the polymer substrate. The plated polymer component may further comprise an adhesion promoter at an interface between the polymer substrate and the metal plating.
Abstract:
A plated polymer component is disclosed. The plated polymer component may comprise a polymer substrate having an outer surface, a metal plating attached to the outer surface of the polymer substrate, and at least one interlocking feature connecting the polymer substrate and the metal plating. The interlocking feature may improve the interfacial bond strength between the polymer substrate and the metal plating.
Abstract:
A method for fabricating a ceramic component is disclosed. The method may comprise: 1) forming a polymer template having a shape that is an inverse of a shape of the ceramic component, 2) placing the polymer template in a mold; 3) injecting the polymer template with a ceramic slurry, 4) firing the ceramic slurry at a temperature to produce a green body, and 5) sintering the green body at an elevated temperature to provide the ceramic component.
Abstract:
An article made of constituent elements is prepared by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively contain the constituent elements. The constituent elements include a titanium-base metallic composition, boron present at a level greater than its room-temperature solid solubility limit, and, optionally, a stable-oxide-forming additive element present at a level greater than its room-temperature solid solubility limit. The precursor compounds are chemically reduced to produce a material comprising a titanium-base metallic composition having titanium boride particles therein, without melting the titanium-base metallic composition. The titanium-base metallic composition having the titanium boride particles therein is consolidated without melting.
Abstract:
An airfoil includes an airfoil wall that defines a leading end, a trailing end, and suction and pressure sides that join the leading end and the trailing end. The airfoil wall is formed of a silicon-containing ceramic. A first environmental barrier topcoat is disposed on the suction side of the airfoil wall, and a second, different environmental barrier topcoat is disposed on the pressure side of the airfoil wall. The first topcoat is vaporization-resistant and the second topcoat is resistant to calcium-magnesium-aluminosilicate.
Abstract:
Coating system (1) for coating a surface (3) of a substrate (5), the coating system (1) comprising; a coating (7), and an adhesive layer (9), that is disposed between the substrate (5) and the coating (7), wherein the adhesive layer (9) comprises a first adhesive layer portion (13) adjacent the substrate (5) and a second adhesive layer portion (15) adjacent the coating (7) and a carrier (11) placed between said first and second adhesive layer portions (13, 5), wherein the first adhesive layer portion (13) is composed of a first adhesive layer material, wherein the second adhesive layer portion (15) is composed of a second adhesive layer material, wherein the first adhesive layer material and the second adhesive layer material is having an adhesive or bond strength to the surface (3) of the substrate (5) and to the coating (7) respectively that exceeds their respective cohesive or tensile strength, wherein the first and second adhesive layer materials and carrier (11) combination is configured for having an adhesive strength that is less than their respective cohesive or tensile strength, wherein the carrier (11) is configured with grab tensile properties such that the carrier (11) in combination with the second adhesive layer portion (15) and the coating (7) will separate from the first adhesive layer portion (13) under the action of a peeling force.
Abstract:
A vented plated polymer component is disclosed. The vented plated polymer component may comprise a polymer substrate, a metal plating deposited on a surface of the polymer substrate, and at least one vent formed through the metal plating. The at least one vent may extend from an outer surface of the metal plating to the surface of the polymer substrate, and it may be sized to allow an escape of a gas from the polymer substrate to an external environment surrounding the plated polymer component.