Abstract:
An article includes a monolithic substrate and a coating on the monolithic substrate. The monolithic substrate is selected from graphite, silicon carbide, silicon carbide nitride, silicon nitride carbide, and silicon nitride. The coating has a free, exposed surface and includes a compound of aluminum (Al), boron (B) and nitrogen (N) in a continuous chemically bonded network having Al—N bonds and B—N bonds. The compound includes an atom of nitrogen covalently bonded to an atom of boron and an atom of aluminum, and the compound has a composition BxAl(1-x)N, where x is 0.001 to 0.999.
Abstract:
A method for applying an abrasive comprises: applying, to a substrate, the integral combination of a self-braze material, an abrasive, a matrix in which the abrasive is at least partially embedded, and an intermediate layer between the self-braze material and the matrix; and heating to cause the self-braze material to braze to the substrate.
Abstract:
An air seal for use in a gas turbine engine. The seal includes a thermally sprayed abradable seal layer. The abradable material is composed of aluminum powder forming a metal matrix, and co-deposited methyl methacrylate particles and/or hexagonal boron nitride particles embedded as filler in the metal matrix.
Abstract:
An adjustment ring of a variable turbine geometry of an exhaust gas turbocharger is disclosed. The adjustment ring may include at least a first ring segment and a second ring segment.
Abstract:
A blade outer airseal has a body comprising: an inner diameter (ID) surface; an outer diameter (OD) surface; a leading end; and a trailing end. The airseal body has a metallic substrate and a coating system atop the substrate along at least a portion of the inner diameter surface. At least over a first area of the inner diameter surface, the coating system comprises an abradable layer system comprising a plurality of layers including a relatively erosion-resistant first layer atop a relatively abradable second layer.
Abstract:
A blade includes a blade body extending from a blade root to an opposed blade tip surface along a longitudinal axis. The blade body defines a pressure side and a suction side. The blade body includes a cutting edge defined where the tip surface of the blade body meets the pressure side of the blade body. The cutting edge is configured to abrade a seal section of an engine case. A method for manufacturing a blade includes forming an airfoil with a root and an opposed tip surface along a longitudinal axis, wherein the airfoil defines a pressure side and a suction side. The method also includes forming a cutting edge where the tip surface of the airfoil meets the pressure side of the airfoil.
Abstract:
A method of repairing a component removes a prior coating from an underlying metal substrate. Small cooling air holes extend through the substrate and the coating that is to be removed. A new coating layer is placed on the metal substrate, and over the existing cooling air holes. The location of the cooling air holes is identified by inspecting the coated component for the location of indicators of the coating passing over the cooling air holes. The identified location of the indicators is used to control a cutting tool to remove any new coating from the cooling air holes. The basic method may also benefit new manufacture.
Abstract:
A seal in a gas turbine engine component between an airfoil with a radial outward end and a seal member adjacent it coated with an abrasive layer having a ceramic component in a matrix of a metal alloy with hexagonal BN. The ceramic component is selected from silica, quartz, alumina, zirconia and mixtures thereof and the metal is selected from nickel, cobalt, copper and iron. The ceramic ranges from about 1% to about 10% and the amount of nickel, cobalt, copper or iron will range from about 30% to about 60% by volume, and the balance is hBN.
Abstract:
The tips of gas turbine engine turbine rotor blades are provided with an abrasive layer and the abrasive layer comprises chromised silicon carbide grit protruding from a layer of material. In particular the abrasive layer comprises a mixture of cubic boron nitride grit and chromised silicon carbide grit and the cubic boron nitride grit and the chromised silicon carbide grit protruding from the layer of material. The cubic boron nitride grit has a greater dimension than the chromised silicon carbide grit. The cubic boron nitride grit cuts the majority of a track in an abradable structure and then the chromised silicon carbide grit provides any additional cutting of the abradable structure.
Abstract:
An improved sealing mechanism for a turbomachine such as a compressor for a gas turbine engine employs an abradable coating with a solid lubricant and metal alloy having a quasicrystalline phase.