Abstract:
A heat exchanger cleaning system (HECS) includes an engine having an intake conduit and an exhaust port, and an EGR cooler having a cooler inlet in fluid communication with the engine exhaust port, a cooler outlet in fluid communication with the engine intake conduit, and an exhaust gas recirculation (EGR) valve disposed between the engine exhaust port and the EGR cooler. A first pressure sensor is disposed between the engine exhaust port and the EGR valve, and a second pressure sensor disposed in the engine intake conduit. A controller is in electrical communication with the EGR valve, the first pressure sensor, and the second pressure sensor. The controller is configured to implement a predetermined set of operating parameters for the engine and/or the EGR valve, wherein implementation of the predetermined set of operating parameters causes an increased flow velocity of exhaust gas through the EGR cooler.
Abstract:
Systems and methods for treated exhaust gas recirculation (EGR) for an internal combustion engine are disclosed. The internal combustion engine has an exhaust manifold discharging exhaust gas and an intake manifold receiving forced air from a compressor. One or more exhaust treatment devices treat the exhaust gas and produce a treated exhaust gas. The EGR system includes an EGR line downstream of the one or more exhaust treatment devices and connected to the engine intake line downstream of the compressor, wherein the treated EGR line recirculates the treated exhaust gas to the intake manifold of the engine without passing through the compressor.
Abstract:
In an internal combustion engine an air-fuel ratio is switched between at least two target values without generating torque fluctuations, while a deterioration in fuel consumption performance and exhaust performance is suppressed. When a condition for switching a combustion mode from stoichiometric combustion to lean combustion and a condition that the amount of change in a target torque is less than or equal to a predetermined value are satisfied, a target EGR rate is increased towards an EGR limit prior to switching the target air-fuel ratio. The target air-fuel ratio is maintained at the stoichiometric air-fuel ratio until the target EGR rate reaches the EGR limit, and in response to the target EGR rate reaching the EGR limit, the target air-fuel ratio is changed towards a lean air-fuel ratio.
Abstract:
Methods and systems are provided for an engine including a humidity sensor. Degradation of the humidity sensor may be determined based on a change in intake air relative humidity as compared to a change in intake air temperature or pressure, under selected conditions. An amount of exhaust gas recirculated to an engine intake is adjusted differently based on whether the humidity sensor is degraded or functional.
Abstract:
A sensor for detecting the oxygen content in the intake tract of an internal combustion engine includes: a sensor element having a measurement electrode; a metal cap that surrounds the sensor element; a heat dissipation element that connects the sensor element and the metal cap; and a bracket for the sensor element. The bracket is in the form of a plastic housing configured to accommodate evaluation electronics for the sensor element.
Abstract:
The present disclosure includes a system and method for regulating exhaust gas recirculation (“EGR”) in an engine. In one embodiment, the system may include a knock sensor coupled to the engine that sends a signal corresponding to at least one operating condition of the engine to a controller. The controller may estimate an amount of EGR gas administered to the engine and regulate the amount of EGR gas being administered to the engine when the estimated amount of EGR gas is not an effective amount.
Abstract:
The present disclosure includes a system and method for regulating exhaust gas recirculation (“EGR”) in an engine. In one embodiment, the system may include a knock sensor coupled to the engine that sends a signal corresponding to at least one operating condition of the engine to a controller. The controller may estimate an amount of EGR gas administered to the engine and regulate the amount of EGR gas being administered to the engine when the estimated amount of EGR gas is not an effective amount.
Abstract:
Methods and systems are provided for indicating water at an oxygen sensor based on power consumption of a heating element of the oxygen sensor. In one example, water may be indicated at an oxygen sensor positioned in an intake of an engine responsive to power consumption of the heating element of the oxygen sensor increasing above a baseline level. Engine operating parameters may then be adjusted based on the water indication and the power consumption.
Abstract:
Systems, methods and techniques for exhaust gas recirculation are provided. The system includes a variable venturi device that connects an inlet air supply line and recirculating exhaust gas supply line to an intake manifold supply. A controller in communication with at least one pumping pressure sensor and a flow control element position sensor associated with the variable venturi mixing device is operable to determine a flow rate of the recirculating exhaust gas. The flow rate determination may be used to control NOx emissions during operation of the internal combustion engine.
Abstract:
Embodiments for controlling an exhaust back-pressure valve are provided. In one example, a method for operating an engine comprises closing an exhaust back-pressure valve in response to a component temperature, and adjusting intake and/or exhaust valve operation in response to closing the exhaust back-pressure valve to reduce cylinder internal exhaust gas recirculation (EGR). In this way, combustion stability may be maintained while the exhaust back-pressure valve is closed.