摘要:
A method of operating an engine includes igniting a combustible mixture in a combustion chamber of the engine, which produces exhaust gases. The exhaust gases are ejected into an exhaust manifold of the engine to create a primary exhaust stream. A portion of the exhaust gases is separated from the primary exhaust stream to create a secondary exhaust stream. Air and fuel are then mixed with the secondary exhaust stream to form a reformer feed mixture. The reformer feed mixture is reacted in a catalytic reformer to create a reformate exhaust stream, which is then mixed with an intake air stream to create a mixed air stream. The mixed air stream is the fed to the combustion chamber of the engine as the combustible mixture.
摘要:
An internal combustion engine for a motor vehicle may include at least one cylinder including a combustion chamber for combusting a fuel-air mixture introduced into the combustion chamber. The engine may also include at least one fuel injector and a fresh air feed. The engine may further include an exhaust gas discharge for discharging exhaust gas from the combustion chamber and an exhaust gas recirculation for recirculating the discharged exhaust gas into the combustion chamber. Additionally, the engine may include a heat exchanger arranged in the exhaust gas recirculation, the heat exchanger may include at least one first fluid path and at least one second fluid path. A knock number of the fuel may be increased when the fuel flows through the heat exchanger. The at least one second fluid path may fluidically communicate with the at least one fuel injector.
摘要:
An exhaust purification system of an internal combustion engine comprising an exhaust treatment catalyst (13) arranged in an engine exhaust passage and a heat and hydrogen generation device (50) able to feed only heat or heat and hydrogen to the exhaust treatment catalyst (13). When the warm-up operation of the heat and hydrogen generation device (50) is completed and a reforming action by a reformer catalyst (54) becomes possible, if the temperature of the exhaust treatment catalyst (13) is a preset activation temperature or more, a partial oxidation reaction is performed at the heat and hydrogen generation device (50) and the generated heat and hydrogen are fed to the exhaust treatment catalyst (50). At this time, if the temperature of the exhaust treatment catalyst (13) is less than the preset activation temperature, a complete oxidation reaction by a lean air-fuel ratio is continued and a heat is fed to the exhaust treatment catalyst (13).
摘要:
An aftertreatment device for reducing NOx, PM, HC, and CO generated by a compression-ignition engine. In this device, lean exhaust air generated in the engine is enriched using a reactor together with an oxygen sorption device according to a target deNOx efficiency value, and heat energy is recovered. The enriched exhaust gas then passes through an oxidation catalyst, where NOx is reduced with CO and HC. PM in the exhaust gas is further trapped in a DPF. To lower energy cost, an heat exchanger is used for more effectively heating the DPF during regeneration, and an exhaust gas compressor positioned upstream from the DPF is employed to control engine back pressure. When exhaust gas temperature is low, to regenerate the DPF with minimum energy consumption, an electrical heater is used to heat dosing fuel before it is mixed with exhaust gas, and a regeneration heating process is then jump-started.
摘要:
An exhaust treatment device of a diesel engine is provided in which combustible gas is burned with oxygen in exhaust, combustion heat increases a temperature of the exhaust, and heat of the exhaust can burn and remove PM accumulating in a DPF. In order to cause a heater for radiating heat at a start of generation of the combustible gas to enter a catalyst inlet portion, and fit a liquid fuel retaining member over a periphery of the heater, a guide plate is provided to a lower face of the liquid fuel retaining member so that the air-fuel mixture moving down in the liquid fuel retaining member flows along an upper face of the guide plate out to a periphery of the guide plate.
摘要:
A reducing agent supplying device includes a reaction container, an ozone generator, an air pump, an ozone-containing air pipe, a compressed air pipe, a switching device, and a switching controller. The reaction container defines a reaction chamber therein in which a reducing agent is reformed. The ozone generator generates ozone from oxygen in air. The air pump supplies air into the ozone generator. An ozone-containing air flows through the ozone-containing air pipe toward the reaction chamber. A portion of a compressed air flows through the compressed air pipe toward the reaction chamber. The switching device switches between an air pump mode, in which the ozone-containing air is supplied into the reaction chamber, and a supercharging mode, in which the compressed air is supplied into the reaction chamber. The switching controller controls the switching device based on a catalyst temperature, which is a temperature of the reducing catalyst, and an exhaust pressure, which is a pressure in the exhaust passage.
摘要:
A method to process exhaust gas expelled from at least one cylinder of a plurality of cylinders of an internal combustion engine, the method comprising providing an internal combustion engine, wherein the engine comprises a steam hydrocarbon reformer including a steam reformation catalyst, treating exhaust gas of the engine containing hydrocarbon and water by reacting the hydrocarbon and water in the presence of the steam reformation catalyst in the steam hydrocarbon reformer to provide treated exhaust gas. The treated exhaust gas includes carbon monoxide gas and hydrogen gas produced from the reaction, and mixing the treated exhaust gas, including the carbon monoxide gas and hydrogen gas produced in the steam hydrocarbon reformer with air to provide the mixture of air and treated exhaust gas introduced into the cylinders of the engine.
摘要:
A reducing agent supplying device is for a fuel combustion system that includes a NOx purifying device with a reducing catalyst arranged in an exhaust passage to purify NOx. The reducing agent supplying device supplies a reducing agent into the exhaust passage upstream of the reducing catalyst. The reducing agent supplying device includes an air pipe, a vaporizing container, an injector, a heating member and a mixing plate. The air pipe defines an air passage therein. The vaporizing chamber is connected to the air pipe. The vaporizing container defines a vaporizing chamber therein that branches off from the air passage. The injector injects liquid hydrocarbon compound as a reducing agent. The heating member is disposed in the vaporizing chamber. The heating member heats and vaporizes the reducing agent. The mixing plate is connected to the heating member. The mixing plate extends from the vaporizing chamber into the air passage.
摘要:
A method for purifying exhaust gas of an internal combustion engine including flowing an exhaust gas containing NOx and a concentration of hydrocarbons in an exhaust gas passage that contains an exhaust purification catalyst, wherein the concentration of hydrocarbons is vibrated within a predetermined range of amplitude and period, and a least a portion of the hydrocarbons are reformed by the exhaust purification catalyst; reacting the NOx contained in the exhaust gas and the reformed hydrocarbons to produce a reducing intermediate; and chemically reducing, wherein at the time of engine operation, a demanded produced amount of the reducing intermediate required for chemically reducing the NOx is calculated, and the amplitude and vibration period of the concentration of hydrocarbons flowing into the exhaust purification catalyst are controlled so that an amount of the reducing intermediate produced becomes the demanded produced amount.
摘要:
In situations where the demand for syngas is intermittent, a fuel processor is operated to provide a high absolute hydrogen and carbon monoxide production, rather than to give a high fuel-specific hydrogen and carbon monoxide production. When a syngas generator is operated to intermittently produce syngas, a heating process can be performed between periods of syngas demand in order to keep the fuel processor within a desired temperature range. The heating process can comprise various steps or events including performing a heating event, allowing a standby period, and/or performing a carbon conversion event. Carbon formed during the process of converting fuel to syngas can be advantageously converted to maintain the temperature of the fuel processor within a desired range in between periods of syngas demand. A predictive method can be employed to control at least a portion of the heating process.