摘要:
A method for manufacturing a carbon-doped silicon single crystal wafer, including steps of: preparing a silicon single crystal wafer not doped with carbon; performing a first RTA treatment on the silicon single crystal wafer in an atmosphere containing compound gas; performing a second RTA treatment at a higher temperature than the first RTA treatment; cooling the silicon single crystal wafer after the second RTA treatment; and performing a third RTA treatment. The crystal wafer is modified to a carbon-doped silicon single crystal wafer, sequentially from a surface thereof: a 3C-SiC single crystal layer; a carbon precipitation layer; a diffusion layer of interstitial carbon and silicon; and a diffusion layer of vacancy and carbon. A carbon-doped silicon single crystal wafer having a surface layer with high carbon concentration and uniform carbon concentration distribution to enable wafer strength enhancement; and a method for manufacturing the carbon-doped silicon single crystal wafer.
摘要:
A system and method for providing support to semiconductor wafer is provided. An embodiment comprises introducing a vacancy enhancing material during the formation of a semiconductor ingot prior to the semiconductor wafer being separated from the semiconductor ingot. The vacancy enhancing material forms vacancies at a high density within the semiconductor ingot, and the vacancies form bulk micro defects within the semiconductor wafer during high temperature processes such as annealing. These bulk micro defects help to provide support and strengthen the semiconductor wafer during subsequent processing and helps to reduce or eliminate a fingerprint overlay that may otherwise occur.
摘要:
A silicon epitaxial wafer including: a second intermediate epitaxial layer on a silicon substrate produced by being cut from a silicon single crystal ingot grown by the CZ method so as to have a carbon concentration ranging from 3×1016 to 2×1017 atoms/cm3, a first intermediate epitaxial layer doped with a dopant, and an epitaxial layer of a device forming region stacked on the first intermediate epitaxial layer, and to a method of producing this wafer. Also providing an industrially excellent silicon epitaxial wafer that is produced with a silicon substrate doped with carbon and used as a semiconductor device substrate such as a memory, a logic, or a solid-state image sensor, and a method of producing this silicon epitaxial wafer.
摘要:
A method of fabrication of laser gain material and utilization of such media includes the steps of introducing a transitional metal, preferably Cr2+ thin film of controllable thickness on the ZnS crystal facets after crystal growth by means of pulse laser deposition or plasma sputtering, thermal annealing of the crystals for effective thermal diffusion of the dopant into the crystal volume with a temperature and exposition time providing the highest concentration of the dopant in the volume without degrading laser performance due to scattering and concentration quenching, and formation of a microchip laser either by means of direct deposition of mirrors on flat and parallel polished facets of a thin Cr:ZnS wafer or by relying on the internal reflectance of such facets.
摘要:
A method of fabrication of laser gain material and utilization of such media includes the steps of introducing a transitional metal, preferably Cr2+ thin film of controllable thickness on the ZnS crystal facets after crystal growth by means of pulse laser deposition or plasma sputtering, thermal annealing of the crystals for effective thermal diffusion of the dopant into the crystal volume with a temperature and exposition time providing the highest concentration of the dopant in the volume without degrading laser performance due to scattering and concentration quenching, and formation of a microchip laser either by means of direct deposition of mirrors on flat and parallel polished facets of a thin Cr:ZnS wafer or by relying on the internal reflectance of such facets. Multiple applications of the laser material are contemplated in the invention.
摘要:
An optical nose for detecting the presence of molecular contaminants in gaseous samples utilizes a tunable seed laser output in conjunction with a pulsed reference laser output to generate a mid-range IR laser output in the 2 to 20 micrometer range for use as a discriminating light source in a photo-acoustic gas analyzer.
摘要:
A low free energy method for more rapidly diffusing an impurity as exemplified by boron, into a natural or synthetic diamond or other crystalline element in powdered or granular form, without degradation of the crystalline structure. The present method includes the steps of providing a mixture of the diamond or other crystalline element and the impurity in a solid phase; treating the mixture to bring the impurity into conforming contact with the outer surface of the crystalline element; and heating the mixture to a temperature between about 200° C. and about 2000° C. As an example, a diamond is disclosed having boron as an impurity diffused into the crystalline structure thereof by the present method, at a ratio of from about 0.1 part of the impurity per 1 million parts of the diamond to about 600 parts of the impurity per 1 million parts of the diamond.
摘要:
The present invention is, in part, a new process for dopant diffusion, both p-type (e.g., B) and n-type (e.g., P, As), into silicon wafers, using rapid thermal processing (RTP). It uses a surface layer of a new planar dopant as an active dopant source. Such a source is produced using either a rigid holder wafer with a spin-on dopant or CVD doped oxides deposited on its surface, or such a source is high pressure planar solid source having a surface that has been activated by dry etching or sputtering etching. Such a dopant source is placed in proximity to a processed silicon wafer in such a manner that its active surface is facing the surface of the silicon wafer during RTP. Both the silicon wafer and the dopant source are heated by lamps emitting light causing transport of dopant from the dopant source to the silicon surface. The dopant source may be produced using either silicon wafers, quartz or ceramic plates or planar solid diffusion sources which are commercially available in a form of solid discs containing compounds containing various dopant atoms (e.g., B, P, and As).
摘要:
Beta double prime alumina is provided having a sensible amount of at least one polyvalent cationic species intercalated therein. In accordance with a preferred embodiment, such beta double prime alumina is provided having trivalent and/or tetravalent cationic species intercalated therein, especially species derived from the lanthanide and actinide series of elements. Certain of the foregoing materials exhibit phosphorescence or fluorescence, and some are believed to be capable of producing laser emission upon suitable irradiation.Methods for modifying beta double prime aluminas comprising contacting crystals of the aluminas with polyvalent cation-containing salts such as in the molten state or in the gaseous state are also provided. Laser and other optical devies are disclosed employing the modified beta double prime aluminas of this invention.
摘要:
A method for doping silicon bodies by the diffusion of boron into the bodies is described. The method is an improvement of processes where the silicon bodies are exposed in a first heating process to a gas mixture containing a predetermined boron quantity and boron and oxygen in a predetermined quantitative ratio and a second heating process is used to drive the boron into the silicon. In the method, a borosilicate glass layer and a boron-rich silicon dioxide layer are removed by first immersing the silicon body in hydrofluoric acid diluted with water and subsequently in an aqueous sulfuric acid/potassium permanganate solution.