Abstract:
A concrete crack repair material based on nano materials includes raw materials as follows: seaweed, sulphoaluminate cement, natural sand, nano-silica fume, calcium formate, fly ash, anhydrous calcium sulphoaluminate, a polyester fiber, a water reducing agent, a corrosion inhibitor and water. By reasonably selecting the raw materials of the concrete crack repair material and making a reasonable ratio of the raw materials, the concrete crack repair material is obtained with excellent performance such as good compressive strength, bending strength and bond strength, and excellent impermeability and frost resistance. The concrete crack repair material can be used for the concrete crack repair in the marine environment, which has very important application values.
Abstract:
The disclosure relates to an improved artificial agglomerated material comprising an inorganic filler, and organic resin and a mixture of silanes as coupling agent, to a method for the manufacture of said agglomerated material, as well as to a mixture of silanes to be used in the manufacture of said agglomerated material.
Abstract:
Gypsum composites containing cementitious materials and methods of making the same are provided. Gypsum composites include gypsum and a cementitious material. Methods of making gypsum composites include combining gypsum stucco, water, and a cementitious material to form a slurry, and setting and drying the slurry to form a gypsum composite.
Abstract:
An expanded lightweight aggregate has compositional ranges (Wt. % Range) of about: (a) 40 to 60% ground glass or pumice, 40 to 60% water, 3 to 15% sodium silicate, and 0.1 to 5% NaNO3 for the slurry; and (b) 50 to 85% ground glass or pumice, and 15 to 50% slurry for the granulator.
Abstract:
A method of making a cementitious composition comprises (a) selecting at least one pozzolanic particulate material; (b) selecting and grinding at least one feldspar material to a fineness of at least 3000 Blaine; (c) mixing calcium oxide or calcium hydroxide with gypsum; (d) mixing the ground feldspar with the lime-gypsum mixture to produce an activator; (e) conditioning the pozzolanic particulate material with an aqueous solution; (f) adding the activator to the conditioned material to produce a slurry; and (g) curing the slurry in a sealed container. The pozzolanic particulate material can be slag, fly ash, or siliceous rock. A cementitious composition of the invention comprises a pozzolanic particulate material, a ground feldspar material, a lime compound and gypsum, and uses readily available materials, as an economic replacement for Portland cement, fly ash or other materials in filling, backfilling and paving, particularly for backfilling or stabilizing mine sites.
Abstract:
Dark colored roofing granules include an inert base particle coated with a composition including a metal silicate, a non-clay latent heat reactant, and a dark colored but solar reflective prigment.
Abstract:
An excavation fluid composition useful for enlarging a cavity in the earth includes a synthetic polymer and sodium silicate. The excavation fluid composition is formulated so as to enable the fluid in contact with unstable or sandy soils in the selected areas of the excavation to react and form silicate-based derivatives with lesser solubility, and movement and thus improve soil stability at the excavation wall.
Abstract:
A storable, hydraulically-active, cementitious slurry is made and used to cement within subterranean foundations for oil and gas wells. The slurry is made from a hydraulically-active cementitious material, a suspending agent, and, as a retarder, boric acid. The boric acid is present in the cementitious slurry in an amount sufficient to lower the pH of the storable cementitious slurry to at least 12.0, preferably to at least 11.0 or preferably, for reasons of longevity, to a pH of at least 9.0. Generally the amount of boric acid in the cementitious slurry is between from about 1 to about 6 percent by weight. Preferred as suspending agent are iota carrageenan as well as poly (methyl vinyl ether/maleic anhydride) decadiene copolymer. The slurry remains liquid during storage. The slurry is activated when needed for cementing and is pumped into the subterranean formation where it is allowed to set.
Abstract:
This invention relates to a cement composition for cementing oil, gas and geothermal wells comprising: a cement; and an additive comprising a blend of a sodium silicate; water; a carrageenan suspending agent; a sodium polyacrylate; an AMPS terpolymer; a dispersant; and a cellulosic water soluble polymer. The dispersant may comprise a sulfonated naphthalene formaldehyde condensate or a sulfonated ketone acetone formaldehyde condensate. The cellulosic water soluble polymer may comprise HEC or CMHEC. The invention can also function to reduce the occurrence of gas channelling and stabilize foam created by adding nitrogen gas to cement.
Abstract:
The invention relates to the use of feldspar granules with a particular combination of oxide constituents in the manufacture of artificial agglomerate stone materials and to the agglomerate stone materials resulting thereof.