Abstract:
A method for suspending lightweight beads in a fluid includes combining lightweight beads, a fluid, and a surfactant to form a liquid additive. The liquid additive may be used to reduce the density of a wellbore fluid. The liquid additive or wellbore fluid can be combined with a cementitious material to form a lightweight cement composition.
Abstract:
An insulating monolithic refractory material having sufficient curing strength and usable time ensured and exhibiting excellent stability at high temperature. The insulating monolithic refractory material comprises a binder and a refractory raw material; a bulk specific gravity thereof is 0.8 to 1.8 when a kneaded mixture of the insulating monolithic refractory material with water is cured at normal temperature for 24 hours and then dried at 110° C. for 24 hours; the binder comprises a calcium aluminate cement including CaO and Al2O3 as chemical components and a strontium aluminate cement including SrO and Al2O3 as chemical components; and on the basis of 100% by mass as a total mass of the binder and the refractory raw material, a content of the strontium aluminate cement is 2 to 10% by mass, and a content of CaO derived from the calcium aluminate cement is 1 to 12% by mass.
Abstract:
Disclosed is a foamed cementitious composition which limits or eliminates aggregate, especially porous lightweight aggregate and uses a lower than usual water to cementitious composition weight ratio. The stable cementitious foam mixtures may be employed to make cement boards and other cement products. The foamed cementitious composition was made with additions of PVOH foaming stabilizer and surfactant foaming agents to make foam water or by entrain air into cementitious slurry mixtures. The cementitious mixtures have a limited amount or preferably no perlite and no lightweight aggregate. The resulting foamed mixture had foam bubbles with size in the range of 50 to 200 μm. After setting the foamed cementitious composition the resulting set board has air cells with size in the range of 50 to 200 μm.
Abstract:
An embodiment comprises a method of treating a subterranean formation comprising: providing a treatment fluid comprising a kiln dust, biowaste ash, and water; and introducing the treatment fluid into a subterranean formation. Another embodiment comprises a method of cementing comprising: introducing a cement composition into a subterranean formation, wherein the cement composition comprises a kiln dust, biowaste ash, and water; and allowing the cement composition to set in the subterranean formation. Yet another embodiment comprises a method comprising: providing a spacer fluid comprising biowaste ash and water; introducing the spacer fluid into a well bore to displace at least a portion of a first fluid from the well bore; and introducing a cement composition into the well bore, wherein the spacer fluid separates the cement composition and the first fluid.
Abstract:
Corrosion-resistant refractory binder compositions may be formed with a calcium ion source, high-alumina refractory aluminosilicate pozzolan, and water. Any one or more of such components may individually be non-cementitious. Examples of high-alumina refractory aluminosilicate pozzolan include crushed firebrick; firebrick grog; and mixtures of silicate and any one or more of corundum, high-alumina ceramic, and bauxite; refractory mortar; fire clay; mullite; fused mullite; and combinations thereof, among others. A binder composition may be mixed with sufficient amount of water to form a slurry, which slurry may be introduced into a subterranean formation (e.g., via a wellbore penetrating the subterranean formation). A plurality of the non-cementitious components may react in the presence of water when exposed to suitable conditions so as to enable the binder composition to set. Such compositions, once set, may exhibit enhanced corrosion and/or heat resistance as compared to other binder compositions.
Abstract:
Disclosed herein are low density fiber cement articles, such as fiber cement building panels and sheets, comprised of multiple overlaying fiber cement substrate layers having small and uniform entrained air pockets and low density fillers distributed throughout. The combination of entrained air pockets and low density fillers provide a low density fiber cement matrix with physical and mechanical properties similar to comparable low density fiber cement matrix without entrained air pockets.
Abstract:
A transition fluid comprises: a hydrocarbon liquid, wherein the hydrocarbon liquid is the external phase of the transition fluid; an aqueous liquid, wherein the aqueous liquid is the internal phase of the transition fluid and wherein the aqueous liquid comprises a water-soluble salt; and a calcium aluminate cement. A method of cementing in a subterranean formation comprises: introducing the transition fluid into the subterranean formation; and introducing a cement composition into the subterranean formation, wherein the step of introducing the cement composition is performed after the step of introducing the transition fluid and wherein the cement composition comprises cement and water.
Abstract:
Functionalized microspheres for being dispersed in matrix materials to reduce the density and weight of the materials may be configured to include a covalently bound surface component which is configured to covalently bond with the matrix material so that when combined with the matrix material a strong, light-weight matrix material may be produced.
Abstract:
The present invention relates to bituminous coated materials including a granular fraction and a binder, characterised in that in the granular fraction all or part of the elements are selected from among lightweight, non-absorbent aggregates with a density of less than 1.6 t/m3 and a water absorption coefficient of less than 15%. The invention also relates to the use of light, non-absorbent aggregates with a density of less than 1.6 t/m3 and a water absorption coefficient of 3% to 15% for the production of light bituminous coated materials. The invention further relates to pavements obtained by applying at least one layer of the coated materials according to the invention and to a method for applying a surface course to a surface raised above the ground which includes a step of applying coated materials according to the invention.
Abstract translation:本发明涉及包含粒状部分和粘合剂的沥青涂层材料,其特征在于,在颗粒部分中,全部或部分元素选自密度小于1.6t / m 3的轻质非吸收聚集体,以及 吸水系数小于15%。 本发明还涉及密度小于1.6t / m 3的轻,非吸收性聚集体和3%至15%的吸水系数用于生产轻质沥青涂层材料。 本发明还涉及通过施加根据本发明的涂层材料的至少一层而获得的路面以及将表面过程施加到在地面上升起的表面的方法,该方法包括施加根据本发明的涂覆材料的步骤。
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100° C. to about 1900° C. to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600° C. to less than about 2200° C.