摘要:
An at least partially crystallized glass includes at least one crystal phase and pores which are distributed in the at least partially crystallized glass in a structured manner.
摘要:
A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members. One-way crack propagation is achieved by providing a weaker member region only on the downstream side of each inter-structure bond.
摘要:
A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members. One-way crack propagation is achieved by providing a weaker member region only on the downstream side of each inter-structure bond.
摘要:
A flexible article made of glass and metal foil, as well as the production thereof, are provided. The flexible article is a multilayered structure having at least one glass layer and one metal foil layer, and the shear strength between glass and metal foil is above 1 MPa/mm2. The glass layer of said flexible article has high electrical resistivity at ambient temperature, low roughness, low thickness, good adherence to metal foil, and the glass in the glass layer has high temperature stability and low flowing temperature, and the thermal expansion coefficient (20 to 300° C.) is 1×10−6/K to 25×10−6/K. The whole article is flexible and can be bent, and the curvature radius of the bent flexible article is above 1 mm.
摘要:
A strengthened layered glass structure includes a first substrate layer comprising a flexible glass sheet having a thickness of less than or equal to 300 μm, a second substrate layer, and a sintered glass frit material layer coupled to a first surface of the first substrate layer and a second surface of the second substrate layer, the sintered glass frit material layer comprising a sintered glass frit coupled to the first and second surfaces providing the flexible glass sheet with a compressive stress of at least about 100 MPa across a thickness of the flexible glass sheet.
摘要:
A crystallizing glass solder for high-temperature applications, which is free of PbO and contains, in % by weight on an oxide basis: 45% to 60% of BaO; 25% to 40% of SiO2; 5% to 15% of B2O3; 0 to
摘要:
To provide a process for producing an airtight member, which can improve bonding property of a sealing layer to a highly thermally conductive substrate and reliability, in airtight sealing of a space between a glass substrate and a highly thermally conductive substrate by local heating by electromagnetic waves.A glass substrate having a sealing material layer having electromagnetic wave absorbing property provided on a sealing region, and a highly thermally conductive substrate having a glass layer formed on a sealing region, are laminated while the sealing material layer and the glass layer are brought into contact with each other. The sealing material layer is irradiated with electromagnetic waves through the glass substrate to heat and melt the sealing material layer thereby to bond it to the glass layer, so as to form a sealing layer which airtightly seals the space between the glass substrate and the thermally conductive substrate.
摘要:
A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to
摘要:
A bonding method using a bonding agent is provided, which has the steps of forming an underlayer on a first member, providing a bonding agent on the underlayer, forming a contact member, different from the bonding agent, on a second member, bringing the bonding agent into contact with the contact member so that the first member and the second member are bonded to each other. In the method described above, the wettability of the bonding agent to the underlayer is superior to that of the bonding agent to a surface of the first member before the underlayer is formed thereon, and the bondability of the bonding agent to the contact member is superior to that of the bonding agent to a surface of the second member before the contact member is formed thereon.
摘要:
A method of treating a glass substrate for bonding. The method includes providing a glass substrate having a fritted portion of a ceramic frit material and a non-fritted portion. At least a portion of the fritted portion includes a bondable surface. The method further includes cleaning and activating the bondable surface for subsequent bonding. The cleaning and bonding steps are carried out by applying an air plasma to the bondable surface.