Abstract:
A display device includes at least two adjacent display tiles having a seam therebetween, and an optical element at the seam to optically blur the seam between the adjacent display tiles, with each of the adjacent display tiles including a substrate, one or more light sources on a first surface of the substrate, and control electronics on a second surface of the substrate opposite the first surface.
Abstract:
A ceramic waveguide includes: a doped metal oxide ceramic core layer; and at least one cladding layer comprising the metal oxide surrounding the core layer, such that the core layer includes an erbium dopant and at least one rare earth metal dopant being: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, lutetium, scandium, or oxides thereof, or at least one non-rare earth metal dopant comprising zirconium or oxides thereof. Also included is a quantum memory including: at least one doped polycrystalline ceramic optical device with the ceramic waveguide and a method of fabricating the ceramic waveguide.
Abstract:
A method of forming a flexible glass-polymer laminate structure includes heating a polymer layer to an elevated temperature of greater than 20° C. and below a working temperature of a flexible glass substrate adjacent the polymer layer. The flexible glass substrate has a thickness of no more than about 0.3 mm. The flexible glass substrate is shaped with the polymer layer at the elevated temperature. The polymer layer is cooled below the elevated temperature such that the flexible glass-polymer laminate structure maintains a non-planar formation.
Abstract:
Embodiments are related to systems and methods for forming vias in a substrate, and more particularly to systems and methods for reducing substrate surface disruption during via formation.
Abstract:
A method of forming a flexible glass-polymer laminate structure includes heating a polymer layer to an elevated temperature of greater than 20° C. and below a working temperature of a flexible glass substrate adjacent the polymer layer. The flexible glass substrate has a thickness of no more than about 0.3 mm. The flexible glass substrate is shaped with the polymer layer at the elevated temperature. The polymer layer is cooled below the elevated temperature such that the flexible glass-polymer laminate structure maintains a non-planar formation.
Abstract:
Embodiments are related to scalable surface feature formation in a substrate and, more particularly, to systems and methods for forming displays using mechanically pressed patterns.
Abstract:
Glass substrate assemblies having low dielectric properties, electronic assemblies incorporating glass substrate assemblies, and methods of fabricating glass substrate assemblies are disclosed. In one embodiment, a substrate assembly includes a glass layer 110 having a first surface and a second surface, and a thickness of less than about 300 μm. The substrate assembly further includes a dielectric layer 120 disposed on at least one of the first surface or the second surface of the glass layer. The dielectric layer has a dielectric constant value of less than about 3.0 in response to electromagnetic radiation having a frequency of 10 GHz. In some embodiments, the glass layer is made of annealed glass such that the glass layer has a dielectric constant value of less than about 5.0 and a dissipation factor value of less than about 0.003 in response to electromagnetic radiation having a frequency of 10 GHz. An electrically conductive layer 142 is disposed on a surface of the dielectric layer, within the dielectric layer or under the dielectric layer.
Abstract:
Packages and methods of packaging a plurality of glass sheets provide a stack of glass sheets with an interleaf protective sheet positioned between each adjacent pair of glass sheets. An outer portion of each interleaf protective sheet is bent over a portion of the peripheral edge of one of a corresponding adjacent pair of glass sheets to discourage relative shifting of the glass sheets with respect to one another. The stack of glass sheets are sandwiched between pressure members of an outer housing such that the pressure members each apply a support pressure that is distributed over an outer surface of a corresponding one of the pair of outermost glass sheets of the stack of glass sheets.
Abstract:
A flexible substrate are disclosed comprising an amorphous inorganic composition, wherein the substrate has a thickness of less than about 250 μm and has at least one of: a) a brittleness ratio less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2. Electronic devices comprising such flexible devices are also disclosed. Also disclosed is a method for making a flexible substrate comprising selecting an amorphous inorganic material capable of forming a substrate having a thickness of less than about 250 μm and having at least one of: a) a brittleness ratio of less than about 9.5 (μm)−1/2, or b) a fracture toughness of at least about 0.75 MPa·(m)1/2; and then forming a substrate from the selected inorganic material.
Abstract:
Embodiments of a method for making a contoured glass article and the resulting contoured glass article are disclosed. In one or more embodiments, the method includes cold bending a flat glass sheet having first and second opposing major surfaces, at least one region having a first thickness, and at least one region having a second thickness that is less than the first thickness, to produce cold bent glass sheet having at least one bend region along a portion of the at least one region having the second thickness; and restraining the cold bent glass sheet to produce the contoured glass article. One or more embodiments pertain to the resulting contoured glass article.