Abstract:
A wired and detachable, moveable, dis-assemble, re-assemble USB or Wireless charging-unit(s) which has minimum feet DC power delivery wire that is manual to coil, wrap within unit's own space for wire-arrangement, said each wired and detachable unit(s) cover broad area and people can chare external product(s) at any location within said area; wherein said unit(s) assembly with electric product which is at least one (1) desk, floor, wall-mounted item, light, (2) power strip, (3) selfie LED light has built-in or added-on image capture device(s).
Abstract:
The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.
Abstract:
An electroluminescent display or lighting product incorporates a panel including a collection of distinct light-emitting elements formed on a substrate. A plurality of distinct local seals are formed below respective individual light-emitting elements or groups of light-emitting elements. Some embodiments combine a metal foil substrate and glass local seals in a flexible bottom-emitting product. The local seal may be used in conjunction with a continuous thin film encapsulation structure. Optical functions can be provided by each local seal, including refraction, filtering, color shifting, and scattering. Each local seal is formed by depositing a low melting temperature glass powder suspension or paste using inkjet technology, and fusing the glass powder using a scanning laser beam having a tailored beam profile. In other embodiments, a lower encapsulation substrate incorporating local window seals is wholly or partially pre-formed.
Abstract:
An electroluminescent display or lighting product incorporates a panel comprising a collection of distinct light-emitting elements formed on a substrate. A plurality of distinct local seals are formed below respective individual light-emitting elements or groups of light-emitting elements. Some embodiments combine a metal foil substrate and glass local seals in a flexible bottom-emitting product. The local seal may be used in conjunction with a continuous thin film encapsulation structure. Optical functions can be provided by each local seal, including refraction, filtering, color shifting, and scattering. Each local seal is formed by depositing a low melting temperature glass powder suspension or paste using inkjet technology, and fusing the glass powder using a scanning laser beam having a tailored beam profile. In other embodiments, a lower encapsulation substrate incorporating local window seals is wholly or partially pre-formed.
Abstract:
An electro-optical panel product comprises a collection of distinct light-emitting elements formed on a substrate. The product may be a display or lighting apparatus, and each electro-optical element may be an OLED. Distinct local seals are formed below respective individual electro-optical elements or groups of electro-optical elements. Some embodiments combine a metal foil substrate and glass local seals in a flexible bottom-emitting product. The local seal may be used in conjunction with a continuous thin film encapsulation structure. Optical functions can be provided by each local seal, including refraction, filtering, color shifting, and scattering. Each local seal is formed by depositing a low melting temperature glass powder suspension or paste using inkjet technology in openings formed in a starter substrate; the glass powder is fused using a scanning laser beam having a tailored beam profile. The lower encapsulation substrate incorporating local window seals may be wholly or partially pre-formed.
Abstract:
A method includes placing a material including a glass precursor material in contact with a second material and annealing the glass precursor material to form a glass composition in contact with the second material. In an embodiment, annealing is performed at a single temperature. In another embodiment, annealing is performed at a temperature in a range of 750° C. to 1000° C. In a particular embodiment, the glass composition includes a crystalline fraction of at least 30%.
Abstract:
Disclosed embodiments demonstrate batch processing methods for producing optical windows for microdevices. The windows protect the active elements of the microdevice from contaminants, while allowing light to pass into and out of the hermetically sealed microdevice package. Windows may be batch produced, reducing the cost of production, by fusing multiple metal frames to a single sheet of glass. In order to allow windows to be welded atop packages, disclosed embodiments keep a lip of metal without any glass after the metal frames are fused to the sheet of glass. Several techniques may accomplish this goal, including grinding grooves in the glass to provide a gap that prevents fusion of the glass to the metal frames along the outside edges in order to form a lip. The disclosed batch processing techniques may allow for more efficient window production, taking advantage of the economy of scale.
Abstract:
The invention relates to a method and to a device for force-fit connecting glass-like components to metals, particularly for connecting a glass plate (2) to a large-scale mounting element (19) as a central connecting element, particularly made of metal, having the following characteristics: a) an input and control device (6) for inputting process data, b) a storage and positioning device (15) for supplying individual fastener elements (1) as support elements of a central connection element (20), c) having mounting and fixing means (3) for fixing a glass plate (2), d) a thickness measuring device (7) for measuring the thickness of each of the components to be connected and layers of the same, e) a measuring machine (8) for measuring the resonant frequency of the glass plate (2) and a surface sensor (10) for determining the roughness of the glass plate (2), f) a sliding device (11) for pressing together the components to be connected by means of an ultrasonic horn (4), g) a device for generating ultrasonics by means of an ultrasonic horn (4), and a computer program for performing the method.
Abstract:
An apparatus and method for manufacturing glass objects comprising a glass blowing pipe and a metal mounting device configured to melt with glass to form a glass piece that is easily removed from the glass blowing pipe without the need to break the glass from the headstock of the glass blowing pipe, wherein the metal mounting device comprises a contact patch and a number of slits to secure the metal mounting device to the glass. A method for manufacturing a glass object utilizing a metal mounting insert is described. A glass object having a metal mounting insert for installation and use in other applications is also described.
Abstract:
The invention relates to a method and to a device for force-fit connecting glass-like components to metals, particularly for connecting a glass plate (2) to a large-scale mounting element (19) as a central connecting element, particularly made of metal, having the following characteristics: a) an input and control device (6) for inputting process data, b) a storage and positioning device (15) for supplying individual fastener elements (1) as support elements of a central connection element (20), c) having mounting and fixing means (3) for fixing a glass plate (2), d) a thickness measuring device (7) for measuring the thickness of each of the components to be connected and layers of the same, e) a measuring machine (8) for measuring the resonant frequency of the glass plate (2) and a surface sensor (10) for determining the roughness of the glass plate (2), f) a sliding device (11) for pressing together the components to be connected by means of an ultrasonic horn (4), g) a device for generating ultrasonics by means of an ultrasonic horn (4), and a computer program for performing the method.