Abstract:
A vehicle includes an engine, a first motor generator that is configured to generate electric power using the power of the engine, an electric storage device that is configured to store the electric power that is generated by the first motor generator, a connection part through which the electric power that has been stored in the electric storage device is supplied to the outside of the vehicle; and an ECU that is configured to start the engine when the SOC of the electric storage device reaches a predetermined starting threshold value. The ECU sets a starting threshold value ON2 that is used when the vehicle is in an undrivable condition and electric power is being supplied to the outside of the vehicle through the connection part to a value smaller than a starting threshold value ON1 that is used when the vehicle is in a drivable condition.
Abstract:
A vehicle control apparatus having an engine and an electric motor includes a clutch, a first travel controller, a second travel controller, and a motor controller. The clutch is disposed in a power transmission path that couples the engine and driving wheels to each other. The first travel controller executes a motor travel in which the driving wheels are driven by the electric motor in a state where the clutch is disengaged to decouple the engine from the driving wheels, and the engine is stopped. The second travel controller executes a cranking travel in which the clutch is engaged while a fuel injection of the engine is stopped in a state in which the motor travel is executed, and the engine is rotated during traveling. The motor controller increases an output torque of the electric motor when a travel mode switches from the motor travel to the cranking travel.
Abstract:
A hybrid vehicle includes a control unit. The control unit limits an output of an electrically powered compressor included in an air conditioner when a shutter has a closed failure in which the shutter cannot be set to an opened state.
Abstract:
A fire apparatus includes a chassis, a cab coupled to the chassis, a pump system coupled to the chassis and positioned at least partially behind the cab, and a driveline. The pump system includes a pump. The driveline includes a prime mover positioned beneath the cab and coupled to the chassis, a transmission, and a sandwiched power take-off unit positioned between (a) the prime mover and (b) the transmission and the pump system. The sandwiched power take-off unit facilitates operating the pump independent of a gear selection of the transmission and a ground speed of the fire apparatus.
Abstract:
A vehicle includes an engine, a first motor generator that is configured to generate electric power using the power of the engine, an electric storage device that is configured to store the electric power that is generated by the first motor generator, a connection part through which the electric power that has been stored in the electric storage device is supplied to the outside of the vehicle; and an ECU that is configured to start the engine when the SOC of the electric storage device reaches a predetermined starting threshold value. The ECU sets a starting threshold value ON2 that is used when the vehicle is in an undrivable condition and electric power is being supplied to the outside of the vehicle through the connection part to a value smaller than a starting threshold value ON1 that is used when the vehicle is in a drivable condition.
Abstract:
A hybrid vehicle includes a control unit. The control unit limits an output of an electrically powered compressor included in an air conditioner when a shutter has a closed failure in which the shutter cannot be set to an opened state.
Abstract:
A hybrid vehicle and an air-conditioning system thereof. A heating part of the air-conditioning system may be provided with an electric heating device (120, 220) and a water heating device (130, 230), the electric heating device (120, 220) is turned on and the water heating device (130, 230) is turned off when the temperature of engine cooling water is lower than a preset temperature threshold, and the electric heating device (120, 220) is turned off and the water heating device (130, 230) is turned on when the temperature is higher than the preset temperature threshold. A refrigerating part of the air-conditioning system may comprise a mechanical compressor and selected auxiliary power units (20) as a portion of a plurality of auxiliary power units, and when cold air flow needs to be supplied, an air-conditioning controller (110, 210) sends an enabling instruction to a power controller (61) to control the selected auxiliary power units (20) to enter a forced working mode. The air-conditioning system of the present invention can rapidly supply heat while reducing electricity consumption of a whole vehicle, and can also achieve good refrigerating effects in low cost and reduce energy consumption. The air-conditioning system according to the present invention is especially suitable for a series hybrid vehicle with a plurality of auxiliary power units.
Abstract:
A hybrid vehicle is provided that includes a battery, a motor that is configured to generate a driving torque using the battery, and an engine that is configured to charge the battery or generate a driving torque together with the motor. A driving controller operates the motor and the engine and an air conditioning controller executes a heat function by a heat of an engine coolant and transmits an engine-drive-requiring signal to the driving controller to heat the engine coolant. When a first condition that a temperature of the engine coolant is greater than a first temperature and a second condition that a driving torque generated by the motor is sufficient to move the hybrid vehicle are satisfied, the engine operation is stopped by a time that a driving torque generated by the engine is required to move the hybrid vehicle regardless of receiving the engine-drive-requiring signal.
Abstract:
A method and a system (200) for providing an auxiliary unit control profile for controlling an auxiliary unit (201) in a motor vehicle (202) including receiving travelling route data relating to a travelling route of the motor vehicle and based thereon, identifying an expected future travelling route. Based on the expected future travelling route and on auxiliary unit operation data, an auxiliary unit control profile for controlling the auxiliary unit during travel along the expected future travelling route is determined in a processing unit (204). The auxiliary unit control profile is outputted to a control unit (206) configured to execute the auxiliary unit control profile and control the auxiliary unit based on the auxiliary unit control profile.
Abstract:
Methods and systems are provided for adjusting a ratio of friction to regenerative brake effort and running an electric air conditioning compressor to collect condensed water for water injection into an engine. In one example, a method may include adjusting the air conditioning compressor load of the electric AC system and the ratio of friction to regenerative brake effort based on a water level in a water storage tank of the water injection system. Further, the method may include directing energy from regenerative braking to a battery and/or to the AC compressor in response to the battery state of charge.