Abstract:
A method for operating a coolant circuit of a refrigeration system of a vehicle having multiple system sections. A single pressure sensor is located in each system section. A temperature sensor is arranged downstream at each component to be balanced in the system sections, such as heat exchangers and a coolant compressor. The sensor signals of the pressure and temperature sensors are supplied to a control unit for the control or regulation of the refrigeration system. Furthermore, a pressure approximation value at the position of the temperature sensor is calculated by a pressure loss value determined using a pressure loss calculation function starting from the position of the pressure sensor arranged in the system section of the component up to the position of the temperature sensor if the temperature sensor and the pressure sensor are arranged at different positions in the system section.
Abstract:
An air conditioning system for a machine is disclosed herein. The machine has an engine, a radiator operably connected to the engine, and a radiator fan to generate a flow of air over the radiator. The air conditioning system includes a condenser, at least one condenser fan, a sensor, and a control unit. The condenser condenses a refrigerant and is structured and arranged to directly receive at least a portion of the flow of air generated by the radiator fan. The at least one condenser fan selectively generates a flow of air over the condenser. The sensor measures at least one of: an engine speed, a temperature of the condenser, and an airflow through the condenser. The control unit selectively controls the at least one condenser fan based on the at least one of: the engine speed, the temperature of the condenser, and the airflow through the condenser.
Abstract:
In a vehicle air conditioning apparatus, during a cooling operation, and a cooling and dehumidifying operation, a refrigerant flows through an outdoor heat exchanger, flows through a supercooling radiator, and then flows into a radiator to absorb heat. During a heating operation, the refrigerant flows through a heat exchanger and then is sucked into a compressor without passing through the supercooling radiator. During a first heating and dehumidifying operation, the refrigerant flows through another radiator, flows through the supercooling radiator, and then flows into another heat exchanger to absorb heat.
Abstract:
An air conditioning system for a vehicle includes a compressor, a gas cooler, an expansion means, and a cooler. The system also includes an elevated pressure density detector for detecting or estimating one or more physical values having a correlation with a density of an elevated pressure refrigerant in a refrigeration cycle. An elevated pressure density controller controls the density of the elevated pressure refrigerant. This control is achieved at least in part by using at least one of the one or more physical values.
Abstract:
In a vehicle air conditioner for heating a passenger compartment by a heater core and a heat pump cycle, when operation of a heat pump cycle is switched from a defrosting operation to a heating assist operation, a heating degree of the heater core is increased higher than a predetermined heating degree. Further, when the operation of the heat pump cycle is switched from the defrosting operation to the heating assist operation, an air outlet mode except for a defrosting mode for defrosting a windshield is set. Further, in the defrosting operation of the heat pump cycle, the temperature of an interior heat exchanger of the heat pump cycle is set higher.
Abstract:
The invention relates to a heating/cooling circuit for a motor vehicle comprising an evaporator (14) for cooling air to be fed into an interior space, a heat exchanger (16) for heating said air to be fed into the interior space, an external heat exchanger (22) comprising a compressor for transporting coolant, a first expansion organ (28), allocated to the evaporator (14), a second expansion organ (30), allocated to the external heat exchanger (22) and coolant conduits (L1 to L12), via which the aforementioned components are interconnected. The compressor (24), the external heat exchanger (22) and the second expansion organ (30) constitute a de-icing circuit of the inventive circuit.
Abstract:
The evaporator and the condenser are disposed in a duct. First bypass passage is disposed at the side of the condenser and first air mixing damper rotates to control air bypassing amount. Further second bypass passage is formed at the side of the evaporator and second mixing damper rotates to control air bypassing amount. Cooling rate at the evaporator and heating rate at the condenser are varied so that air adjusted in proper temperature is generated and discharged from each outlets into a room. An outside heat exchanger is disposed the outside of the duct. Refrigerant flow is randomly switched among the outside heat exchanger, the evaporator and the condenser so that cooling, heating, dehumidifying, dehumidified-heating and defrosting operations are performed.
Abstract:
An air-flow management system for controlling the supply air to a motor vehicle passenger compartment is disclosed. The air-flow management system includes a reversible heat pump system for transferring heat energy between an outside environment and a refrigerant. Air from the outside environment, fresh air, and from the passenger compartment, recirculated air, is forced through the air-flow structure by a blower resulting in the transfer of heat energy between the refrigerant and the passenger compartment. A recirculation door provides a means for controlling the mixture of fresh air to recirculated air that flows through the air-flow structure. The position of the recirculation door is selectable by a controller to prevent fogging during the transition from cooling mode to heating mode, minimize the energy expended conditioning the passenger compartment air, and prevent the backflow of unconditioned outside air from the fresh air duct into the recirculation duct.
Abstract:
A flow management device is provided for managing refrigerant flow in a reversible HVAC system. Refrigerant lines from the system heat exchangers connect to bi-directional ports on the flow management device which converts the high pressure refrigerant flowing in one bi-directional port into pressure reduced refrigerant that flows out of the other bi-directional port. The flow management device has multiple bi-directional ports and a flow path for refrigerant extending between the ports. Flow sensitive valves are positioned within the flow path to prevent high pressure refrigerant from flowing between the ports. A pressure reducing device is arranged so that high pressure refrigerant flowing into one of the ports flows through one of the flow sensitive valves and then into the pressure reducing device. Pressure reduced refrigerant emitted from the pressure reducing device flows through a multi-function valve and out the other port. The invention can further integrate the receiver/drier function into the flow management device providing a centralized device for filtering refrigerant flow and ensuring a continuous supply of liquid refrigerant to the pressure reducing device. Also, outlets can be added to the receiver portion of the flow management center to provide a source of high pressure liquid refrigerant for secondary heat exchangers.
Abstract:
An automotive air conditioner which conditions air making use of radiation of heat of a condenser and absorption of heat of an evaporator effectively. The evaporator 207 and the condenser 203 are disposed in a duct 100. An condenser disposed in a duct has a heat exchanging section in which heat exchange is performed between refrigerant and draft air. The heat exchanging section is divided into an upper stream area portion, a middle stream area portion and a lower stream area portion, and a temperature sensitive tube of a subcooling control valve is held in contact with a refrigerant passageway which interconnects the middle and lower stream area portions. The subcooling control valve adjusts the opening of a throttle portion thereof so that the subcooling degree on the upstream of the lower stream area portion where the temperature sensitive tube contacts may be a predetermined value (2.degree. to 10.degree. C.).