摘要:
A method for manufacturing an antibacterial copper nanofiber by injection molding includes the following steps: raw material mixing operation: mixing dry copper nanopowder having an averaged particle size of not more than 48 nm with a fiber raw material to form a mixed raw material; and injection molding operation, including plasticization, filling, pressurization, cooling, ejection, and product injection. Finally, an antibacterial copper nanofiber injection product is obtained. Or in the raw material mixing operation, after mixing a dry copper nanopowder having an averaged particle size of not more than 48 nm with a fiber raw material to form a mixed raw material, mixing and granulating operation can be added, including heating, blending, extruding and granulating the mixed raw material through a mixer, and then melting to form a plurality of antibacterial copper nano-masterbatches; and then injection molding operation is performed to obtain an antibacterial copper nanofiber injection product.
摘要:
Methods of making consolidated blend(s) of polymeric material(s) with one or more therapeutic agents (such as an antibiotic) are provided, wherein the method comprises the steps of providing a polymeric material, blending the polymeric material with one or more therapeutic agent(s), pelletizing the blended polymeric material, environmentally treating by various approaches the pelletized polymeric material, and consolidating the environmentally treated pellet. Products made by the methods and uses of the products also are provided.
摘要:
Provided is a method for manufacturing a molded plastic products having copper-based compound particulates. The method includes the steps of: reacting copper sulfate with sulfuric salt, at a molar ratio of 1:1 in an aqueous solution at a temperature of 10˜80° C., thereby synthesizing copper sulfide particulates; forming a sheet comprising the copper sulfide particulates dispersed in a thermoplastic resin.
摘要:
A method of making a multi-layer biocidal structure includes providing a support and locating a first curable layer on the support, the first curable layer including dispersed multiple biocidal particles. A second curable layer is located on the first curable layer; the multiple biocidal particles are dispersed within only the first curable layer. The first curable layer and the second curable layer are imprinted in a single step with an imprinting stamp having a structure with a depth greater than the thickness of the second curable layer. The first curable layer and the second curable layer are cured in a single step to form a first cured layer and a second cured layer. The imprinting stamp is removed.
摘要:
The present invention describes both a stretch-blow-molded opaque polyester container and a method of making it. The container, typically a beverage bottle has less than 15% transmission of visible light (500 nm) through a 0.4 millimeter wall thickness. It contains from about 0.1 to about 5 wt. % of said opacifying material. The opacifying material may be any material compatible with polyester resin. The method of making the container includes introducing the opacifying material during polymerization, or prepared as a master batch for mixing with the polymer. Selection of certain opacifying materials can also result in favorable reheat properties, gas permeation-barrier improvements, and when the resin contains both opacifying material and oxygen scavenger there can be a synergistic effect with respect to CO2 permeation.
摘要:
Methods of fabricating implantable medical devices, preferably with PEEK, having antimicrobial properties, are disclosed. The antimicrobial effect is produced by incorporating ceramic particles containing antimicrobial metal cations into molten PEEK resin, which is subsequently allowed to cool and set in its final shape achieved by injection molding, cutting and machining or other techniques.
摘要:
A molded article for an electronic device housing having a thickness of about 0.2 to about 2 mm and an apparent specific gravity of about 0.8 to about 2.5 g/ml is provided. A method for preparing the molded article for an electronic device housing includes extrusion molding a thermoplastic resin composition to form a continuous profile extrudate with a prescribed cross-sectional shape; and vacuum forming the continuous profile extrudate to form a molded article with a thickness of about 0.2 to about 2 mm and an apparent specific gravity of about 0.8 to about 2.5 g/ml.
摘要:
Preform for the blow-molding of a container comprising a neck section (10), an adjoining wall section (20) having a substantially cylindrical shape, with in between a neck ring (12) as a transition region, and further a bottom section (30) which forms the base of the preform, which is composed of a multilayer structure consisting in two surface layers, the one of which (1) is directed outwardly respective the preform and wherein the other (3) is directed inwardly with respect thereto, with in between an intermediate layer (2) which forms a core layer, wherein both surface layers (1, 3) are composed of a primary material and wherein said intermediate layer (2) is composed of a secondary material, remarkable in that the center surface of said intermediate layer (2) is directed outwardly, toward the outer surface, with respect to the center surface of said wall section (20) and in that said primary and secondary materials respectively are mutually different. This invention further relates to a method for producing the aforementioned preform. Microorganismus are mixed into the polymers to improve material properties.
摘要:
Disclosed is a composite material having the appearance of natural stone that made from a polymer and natural aggregate. The composite material also has an antimicrobial material incorporated into it that resists the proliferation of microbes on the surface of the material. A method for producing this material is also disclosed.