Abstract:
The present disclosure relates to methods and apparatuses for mechanically bonding substrates together. The apparatuses may include a pattern roll having three or more pattern elements protruding radially outward, wherein each pattern element includes a pattern surface. The pattern surfaces are also separated from each other by gaps having minimum widths. The pattern roll may be adjacent an anvil roll to define a nip between the pattern surfaces and the anvil roll, wherein the pattern roll is biased toward the anvil roll to define a nip pressure between pattern surfaces and the anvil roll. As substrates advance between the pattern roll and anvil roll, the substrates are compressed between the anvil roll and the pattern surfaces to form a discrete bond region between the substrates. During the bonding process, some of yielded substrate material also flows from under the pattern surfaces and into the gaps to form gap grommet regions.
Abstract:
The invention relates in a first aspect, to a panel suitable for assembling a waterproof floor or wall covering by interconnecting a plurality of said panels with each other, wherein the panel has a substantially planar top surface, and a substantially planar bottom surface, at least four substantially linear side edges comprising at least one pair of opposite side edges which are provided with interconnecting coupling means for interconnecting one panel within another. The invention also relates to a method of producing a panel according to the invention.
Abstract:
A seam joining together at least two web materials in an overlapped manner by ultrasonic welding, heat bonding or the like, in a bonding pattern, which includes comprising a first bonding pattern and at least one second bonding pattern extending in a longitudinal direction along and adjacent at least one side edge of the overlapped portion. The bonded area of the second bonding pattern occupies more than 30% of the combined bonded area of the first and second bonding patterns. The bonding elements of the first bonding pattern have a mean area that is at least 2 times the mean area of the bonding elements of the second bonding pattern. The contact area of the bonding pattern, as seen in transverse direction of the seam, is between 10 and 30% of the width of the bonding pattern at any given point along the length of the bonding pattern.
Abstract:
A manufacturing method of a vehicular interior part in which a cover member is attached to a base material, comprising the steps of forming a skin material, comprising a plurality of skin pieces sewn together, in accordance with a surface shape of said base material; and forming said cover member by attaching a soft material to a backside of said skin material after forming said skin material in accordance with said surface shape of said base material; and attaching said cover member to said base material.
Abstract:
This invention provides multi-layered composites, laminates and composite joints in which at least one resin-impregnated, fiber-containing layer is joined or laminated to a core layer having a lower flexural modulus or higher elongation at break, higher toughness, or a combination of all or some of these properties. The multi-layer composite produced by laminating or joining these materials together has improved shearout, impact and cutting resistance, since stresses caused by outside forces can be more widely distributed throughout the composite.
Abstract:
An arrangement for applying elastic elements (1a, 1b, 1c) to a continuous material web (7) includes a first roll device (4, 5; 4, 5null) for advancing the elastic elements (1a, 1b, 1c) in series and at a first predetermined speed (v1) and a second roll device (6; 11, 12) for advancing the material web (7) at a second predetermined speed (v2). The second speed (v2) exceeds the first speed (v1) and the arrangement includes an abutment surface (6; 10a) arranged at a distance (d) from the first roll device (4, 5; 4, 5null) which is less than the combined thickness of the elastic elements (1a, 1b, 1c) and the material web (7), an elongation of the elastic elements (1a, 1b, 1c) in their longitudinal direction being realized as they pass between the first roll device (4, 5; 4, 5null) and the said abutment surface (6; 10a).
Abstract:
A manufacturing method for an article having a foamed layer, comprising the steps of: retaining and fixing an adherent portion having a resin-made reinforcing layer and a foamed layer, the reinforcing layer having an integrally formed design surface; and vibration welding, with a low-frequency wave, the reinforcing layer and a base portion together so as to be integrally bonded while the base portion, formed of resin which can be welded to the reinforcing layer, is in contact with the reinforcing layer. Thus, it is possible to reduce the processes which require a great deal of man-hours, such as the applying and drying of an adhesive material, sewing and mechanically affixing. Consequently, an attractive article can be produced while reducing manufacturing man-hours and providing for automated manufacture.
Abstract:
The present disclosure relates to methods and apparatuses for mechanically bonding substrates together. The apparatuses may include a pattern roll having three or more pattern elements protruding radially outward, wherein each pattern element includes a pattern surface. The pattern surfaces are also separated from each other by gaps having minimum widths. The pattern roll may be adjacent an anvil roll to define a nip between the pattern surfaces and the anvil roll, wherein the pattern roll is biased toward the anvil roll to define a nip pressure between pattern surfaces and the anvil roll. As substrates advance between the pattern roll and anvil roll, the substrates are compressed between the anvil roll and the pattern surfaces to form a discrete bond region between the substrates. During the bonding process, some of yielded substrate material also flows from under the pattern surfaces and into the gaps to form gap grommet regions.
Abstract:
The present invention is a method for manufacturing inflatable articles, or bladders for inflatable articles, that is time-efficient, simple, inexpensive and permits the uninterrupted manufacture of numerous and even customized article or bladder configurations and sizes, without expensive configuration-specific, metal tooling. The method includes the steps of applying a barrier material to a side of a first film, providing a second film with the first film so that the barrier material is disposed between the first and second films, adhering the first film to the second film so that the films are sealed together in areas except where the barrier material has been applied to form at least one inflatable compartment and sealed peripheral edge, and cutting along the sealed peripheral edge to form an inflatable article or bladder for use in an article of manufacture. The barrier material may be a paint, ink, paper or surface treatment that effectively prevents the first film from adhering to the second. The inflatable article or bladder of the present invention may be used as or in athletic equipment, for example, including footwear.