Abstract:
A method for controlling a data center, comprising a plurality of server systems, each associated with a cooling system and a thermal constraint, comprising: a concurrent physical condition of a first server system; predicting a future physical condition based on a set of future states of the first server system; dynamically controlling the cooling system in response to at least the input and the predicted future physical condition, to selectively cool the first server system sufficient to meet the predetermined thermal constraint; and controlling an allocation of tasks between the plurality of server systems to selectively load the first server system within the predetermined thermal constraint and selectively idle a second server system, wherein the idle second server system can be recruited to accept tasks when allocated to it, and wherein the cooling system associated with the idle second server system is selectively operated in a low power consumption state.
Abstract:
A method of extracting bitumen from oil sands having a transition temperature at which the oil sands solidify includes forming formable oil sands into pellets and cooling at least a surface of the pellets sufficiently to prevent the pellets from aggregating; cooling the pellets to below the transition temperature; fracturing the pellets to release the bitumen from the oil sands while maintaining the temperature of the pellets below the transition temperature; and separating the bitumen from the oil sands in a separator.
Abstract:
The invention relates to a method for treating oil sand. The steps consisting of cooling said oil sand to a temperature lower than the glass transition temperature of the bitumen by bringing said oil sand into contact with carbon dioxide in the solid state and applying mechanical energy to the mixture produced. Then melting the solid carbon dioxide in such a way as to produce a multiphase system. The multiphase system is then separated into at least one solid phase and at least one liquid phase. The bituminous phase is then recovered from the separated liquid phase. The invention also relates to a device for treating oil sand, especially designed for implementing said method.
Abstract:
Methods of separating one type of nanoparticle from another type of nanoparticle in a mixture including more than one type of nanoparticle are disclosed. The methods may include suspending a mixture of the various types of nanoparticles in a liquid and modifying a characteristic of the liquid. Thereafter, a force may be applied to the nanoparticles within the mixture causing one type of nanoparticles to separate from another type of nanoparticles. The applied force may be the force of gravity, or it may be an induced force such as a centrifugal force applied with a centrifuge or similar apparatus. Upon the occurrence physical separation, sub-populations of nanoparticles may be removed from the suspension or segregated. Alternatively the methods may include modifying a type of nanoparticle in suspension. Alternative embodiments include nanoparticles modified in suspension to provide for separation from other types of nanoparticles.
Abstract:
An apparatus for recovering a desired fraction of a raw material bearing the desired fraction has a vessel or cell defining a treatment chamber therein, with an inlet into the chamber for introducing a slurry of raw material to be treated into the chamber. An attrition zone is defined in a portion of the chamber proximate the inlet in the flow path of material introduced into the chamber, the particles being caused to impact against each other in the attrition zone to cause attritioning thereof. A floatation zone is defined in a distal portion of the chamber, in flow communication with the attrition zone, in which attritioned particles from the attrition zone can be contacted with gas bubbles to form a froth phase separated from the slurry by a slurry-froth interface such that the desired fraction is either selectively taken up into the froth phase by the gas bubbles or selectively left behind in the slurry. An outlet from the chamber for the froth phase is present.
Abstract:
Processes for treating fly ash to enhance the fly ash as a pozzolan for portland cement mixes and to separate therefrom a substantial carbon compound and/or to increase the fineness of the fly ash include the treatment of a fly ash slurry with ultrasonic energy using ultrasonic horns immersed in a slurry of fly ash and water and imparting to said slurry such ultrasonic energy as to cause microscopic cavities to form and implode with high localized energy to break up fly ash agglomerations along cleavage lines and to break up carbon particles and matrices which have entrapped fly ash microspheres therein to release the microspheres into the slurry. A conditioner agent may be added at or during ultrasonic treatment to enhance the flotation of the carbon compound.
Abstract:
A method and apparatus for individually collecting layers from a laminated film containing many layers made of different materials by peeling or separating the layers one from the other. The laminated film having a plurality of layers made of different materials is shredded into a plurality of fragments to be processed; and the fragments to be processed are peeled or separated according to the type of layer by applying an impact frictional striking force to each of the fragments to be processed. Subsequently, the peeled or separated layers obtained in the peeling and separating step are subjected to a wind force classifying step. The collected layers in the mixed state are separated from one another, and they are individually collected.
Abstract:
An apparatus for treating process material includes a vessel into which process material can be introduced, an arrangement for introducing steam into the interior of the vessel to heat and impart moisture to process material in the vessel, and several fluid transport conduits extending helically through the vessel for conveying heated fluid through the vessel between opposite ends of the vessel in order to raise the temperature and pressure within the vessel to treat the material while also allowing the moisture content of the process material to be reduced. The fluid transport conduits are also configured to contact the process material and assist in treating and densifying the material. The vessel can also be adapted to be pivoted so that the forward end of the vessel can be selectively positioned above and below a horizontal position. The vessel can also be interconnected with one or more similarly configured vessels to define a system for treating process material. The system can include an arrangement that allows steam and heat from a hot vessel to be conveyed to a cold vessel. A method for treating process material can include introducing process material into two different vessels, raising the temperature within one of the vessels through the introduction of steam to heat the material in the vessel, and reducing the temperature in the one vessel while also increasing the temperature in the other vessel by venting the interior of the one vessel to the interior of the other vessel.
Abstract:
A system for recovering ferrous metal components from waste materials includes a first magnetic separator for magnetically separating ferrous metal components from waste material and an impacting device for dislodging residual waste material from the surface of ferrous metal components separated by the first magnetic separator. The system may also include a second magnetic separator following the impacting device, a water washing system for cleaning ferrous metal components retained by the second magnetic separator, a ferrous metal collection station, a waste material collection station and conveyors for conveying the various unseparated and separated materials throughout the system. The impacting device includes a solid wall rotatable drum having at least one radially inwardly projecting protruberance on its interior surface. As the drum rotates, the protruberances lift the ferrous materials separated by the first magnetic separator. When the protruberances reach a sufficient elevation and angular orientation within the drum, the ferrous metal components and residual waste material clinging thereto drop under the influence of gravity and impact against the interior surface of the drum. The repeated impacts of the ferrous material with the interior surface of the drum effectively dislodges waste material from the surface of the ferrous metal components without comminuting the ferrous material or subjecting the drum to aggressive wear and tear.
Abstract:
The present invention pertains to a system and a method for recovering salvageable ferrous and non-ferrous materials from incinerated waste materials including friable, carbonaceous incineration byproducts such as ash and associated ferrous and non-ferrous metal components. The system includes at least one crushing means for selectively comminuting friable material comprised of a rotating roll having at least one protrusion, preferably a weld extending transversely to the direction of rotation of roll, on its exterior cylindrical surfaces in spaced relation to a backing plate. The backing plate is urged toward the roll by a bias means exerted a preferably adjustable pressure sufficient to comminute the friable carbonaceous material to a desired size, and insufficient so as to permit the backing plate to retract and allow passage of ferrous and non-ferrous components in the waste material through the crushing means substantially uncomminuted. The bias means tends to rapidly urge the retracted backing plate to its set position and exert a selective comminution pressure through the retraction cycle. At last a first separating means coacts with the first crushing means for at least partially separating comminuted carbonaceous incineration byproducts from ferrous and non-ferrous metal components; and first magnetic means separates ferrous metal components from the waste material. The present invention further relates to a novel crusher for selectively comminuting friable materials without substantially comminuting associated malleable materials.