Abstract:
Processes for treating fly ash to enhance the fly ash as a pozzolan for portland cement mixes and to separate therefrom a substantial carbon compound and/or to increase the fineness of the fly ash include the treatment of a fly ash slurry with ultrasonic energy using ultrasonic horns immersed in a slurry of fly ash and water and imparting to said slurry such ultrasonic energy as to cause microscopic cavities to form and implode with high localized energy to break up fly ash agglomerations along cleavage lines and to break up carbon particles and matrices which have entrapped fly ash microspheres therein to release the microspheres into the slurry. A conditioner agent may be added at or during ultrasonic treatment to enhance the flotation of the carbon compound.
Abstract:
Processes for treating fly ash to enhance the fly ash as a pozzolan for portland cement mixes and to separate therefrom a substantial carbon compound and/or to increase the fineness of the fly ash include the treatment of a fly ash slurry with ultrasonic energy using ultrasonic horns immersed in a slurry of fly ash and water and imparting to said slurry such ultrasonic energy as to cause microscopic cavities to form and implode with high localized energy to break up fly ash agglomerations along cleavage lines and to break up carbon particles and matrices which have entrapped fly ash microspheres therein to release the microspheres into the slurry. A conditioner agent may be added at or during ultrasonic treatment to enhance the flotation of the carbon compound.
Abstract:
A method of treating fly ash which has a moisture content and which also has a high carbon particle content includes the steps of heating the fly ash to a temperature sufficient to break the bond between the fly ash and the carbon particles caused by the moisture content, applying the heated fly ash in a relatively thin layer to the surface of a belt-type conveyor and subjecting the layer of heated fly ash to the effects of an electrostatic charging zone while repeatedly mechanically rearranging the orientation of the fly ash particles in the zone for causing the carbon particles to take a charge and become attracted to an electrode so that the same may be separated from the layer. Apparatus for separating carbon particles from fly ash includes a generally horizontal conveyor, and a hopper which applies fly ash to be treated in a layer on the surface of a conductive belt. The belt carries the fly ash layer through an elongated electrostatic charging zone, and beaters beneath the belt impart a vibration to the belt for causing the fly ash layer to be in a state of agitation. The belt forms a lower electrode, while an upper electrode is spaced above the belt and the entire separation zone is environmentally enclosed to exclude ambient air and moisture from the separating zone. Collection bins are positioned along the lateral sides of the belt for capturing carbon particles discharged from the zone, while the accepts are delivered off of the end of the belt into a suitable bin.
Abstract:
Methods and apparatus for reducing the carbon content of fly ash are disclosed. The fly ash is subjected to an inclined surface having first and second vibratory sources for respectively moving the fly ash from the elevated end of the incline to the lower end and to disaggregate and stratify a high carbon fraction from an enhanced fly ash fraction. The second vibratory source, in combination with the inclined surface, separates the lighter, high carbon fraction while the heavier enhanced fly ash fraction travels toward the lower end of the incline. An air jet and associated vacuum draft pull the high carbon fraction from the incline, leaving the enhanced fly ash portion for use, after removal from the surface, as an example, as acceptable mineral admixture for use in Portland Cement concrete.