摘要:
Aspects of the present disclosure provide various apparatus and methods. In some embodiments, an apparatus is provided for mixing a gas with a liquid. The apparatus may include a pipe having two ends. The pipe may provide a main fluid path and may have an interior surface having a first groove. The apparatus may also include a helical vane disposed inside the pipe. The vane may have a first projecting tongue that engages the first groove. The apparatus may also include a gas injection port on the pipe adapted to inject gas into the fluid path upstream of the helical vane. In some embodiments, the helical vane may be a 3D printed component.
摘要:
A system for automatically producing a brine solution having a concentration of a primary solute that is stable at a defined temperature comprises a controller, a mixing reservoir, a primary solute concentration sensor, and a storage tank. Methods for automatically producing solutions are described.
摘要:
The device for adjusting the concentration of a gas in a liquid includes a cartridge in which the concentration of the gas in the liquid is adjusted, a pipe for supplying the liquid into the cartridge, a pipe for supplying gas into the cartridge, and a pipe for discharging the liquid from the cartridge. The gas supply pipe includes an expansion valve with of which the pressure setpoint that is controlled by a setpoint for the quantity amount of gas in the liquid and by an amount of a quantity of gas in the liquid measured by a gas concentration sensor located in the liquid discharge pipe.
摘要:
An ozone water production device (1) includes: flow rate controllers (4, 5) that each control a flow rate of gas which is a raw material; a flow rate meter (12) that measures a flow rate of water which is a raw material; a booster pump (13) that controls pressure of the water; an ozone water generating unit (8) that generates ozone water by mixing ozone gas and the water; and a pressure sensor (17) that measures pressure of the ozone water which is to be supplied to a use point (19). The booster pump (13) controls the pressure of the water such that the pressure of the ozone water measured by the pressure sensor (17) is constant. The flow rate controllers (4, 5) each control the flow rate of the gas in accordance with the flow rate of the water measured by the flow rate meter (12).
摘要:
Disclosed herein is a device and method for changing the conditions of a solution flowing in a serial path. In particular, disclosed herein is a device that includes a chemical reactor, a first system, and a second system that are each serial to one another. Each of the first system and the second system include a mixing chamber, a solvent reservoir, a solvent pump, and one or more detectors. Also disclosed herein is a method for changing the condition of a solution that includes flowing a liquid sample in a path, serially mixing the sample with at least two discrete solvents while it flows through the path, and detecting the condition of the sample after it is mixed with each solvent.
摘要:
The present invention relates generally to a horticultural nutrient control system and method for using same. The invention relates to an apparatus, and related methods, for automatically formulating, storing, and dispensing a nutrient solution to one or more horticultural crop, comprising: a) a reservoir unit for receiving a nutrient solution, mixing said nutrient solution, and dispensing said nutrient solution to a corresponding horticultural crop, wherein said reservoir unit comprises: i) a vertical cylindrical tank terminating at a cone-shaped bottom outlet; ii) a plurality of vertical baffles extending from the interior surface of the reservoir unit; and iii) a plurality of fluid eductors positioned along the length of each baffle, said fluid eductors adapted to deliver said nutrient solution in combination with oxygen to said reservoir unit; b) a nutrient delivery assembly fluidly connecting a water source and a plurality of nutritional component sources to said reservoir unit, said nutrient delivery assembly adapted to controllably deliver said water and nutritional components to said reservoir unit through said plurality of fluid eductors; c) controller coupled to said nutrient delivery assembly and adapted to direct the delivery of said water and nutritional components to the reservoir unit; and d) a storage-control unit for housing at least a central processing unit, said nutrient delivery assembly, and said plurality of nutritional component sources, wherein said central processing unit is operably coupled to said controller.
摘要:
Liquid blending systems and methods of blending liquids are provided. In particular, systems and methods for compensating binary inlet buffers during inline buffer dilution are provided. The systems and methods can provide blends of diluent, a first buffer concentrate containing a majority of a tempering component, and a second buffer concentrate containing a minority of a tempering component. The flow of the first buffer concentrate can be adjusted based upon the total amount of the tempering component being added to the blend through the first and second buffer concentrates.
摘要:
Disclosed is a substrate processing system including a nozzle to supply a chemical solution containing a mixture of first and second solutions onto a substrate loaded on a supporter of a process chamber, a chemical solution supplying system to supply the chemical solution to the nozzle, and a controller to control the chemical solution supplying system. The chemical solution supplying system may include a mixing tank mixing a plurality of chemicals to produce the first solution, a supply tank receiving the first solution from the mixing tank and producing the chemical solution, a connection line to connect the mixing tank to the supply tank, and a valve and a pump on the connection line. The pump is controlled to allow the first solution to be supplied into the supply tank at a predetermined supply amount per stroke.
摘要:
An ozonated water supply method includes: feeding dissolving water contained in a circulation tank to an ozonation device at a given feed rate while feeding ultrapure water to the circulation tank, and returning ozonated water that has not been used at a use point to the circulation tank, dissolving ozone in the dissolving water using the ozonation device to obtain ozonated water, and feeding the ozonated water to the use point; feeding oxygen gas having a nitrogen gas content of 0.01 vol % or less to a discharge-type ozone gas-producer, and feeding the resulting ozone-containing gas to the ozonation device; adjusting the feed rate of the ultrapure water to the circulation tank; and adjusting the dissolved ozone concentration in the ozonated water. The method can reduce or suppress the accumulation of nitric acid in the recirculation system when a discharge-type ozone gas-producer is used as the ozone gas-producer.