Abstract:
The present invention concerns a powdery slaked lime composition an Alpine fluidity greater than 50% and including a first fraction of particles having a size less than 32 μm and a second fraction of particles with the size greater than 32 μm, the second fraction being less than 10% by weight, compared to the total weight of the composition. The invention also relates to a method for producing same.
Abstract:
Air filters formed from mats of protein-containing nanowires are provided. The nanowires are formed into a mat with pores that allow air to pass through while physically filtering particulate matter. The protein in the protein-containing nanowires also serves to chemically filter polluted air passed through the filter. Specifically, chemical functional groups from the many amino acids that comprise the protein of the protein-containing nanowire react with certain chemical pollutants (e.g., carbon monoxide and formaldehyde) in order to capture or otherwise neutralize the pollutant. Accordingly, the single nanofiber mat performs two filtering functions. Methods of filtering air using the provided air filters are also disclosed, as well as methods for making the air filters from protein-containing nanofibers.
Abstract:
A filter is includes a housing and at least first and second adsorbent materials within the housing. The second adsorbent material has different characteristic from the first adsorbent material and is in series with the first adsorbent material. When assembled, a labyrinth arrangement is located between a first port in the housing and the first adsorbent material such that gas travels between the first port and the first adsorbent material by passing through the labyrinth arrangement. A filtration system and methods for humidity control of a liquid tank head space uses a filter, including first and second adsorbent and a diffusion channel or labyrinth arrangement.
Abstract:
Provided herein are compositions for removal of contaminants from an air stream. The composition contains a filtration agent having one or more components that can adsorb tar or other contaminants from smoke. Also provided is a method for removing a contaminant from an air stream. Also provided are a system and a kit employing the filtration agent.
Abstract:
A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.
Abstract:
Adsorbent mixture comprising: adsorbent particles having a mean length DM(ads), a mean cross section Sm of mean diameter Dm(ads) and an aspect ratio RF1 with RF1=DM(ads)/Dm(ads), and phase change material (PCM) particles having a mean length DM(pcm), a mean cross section Sm of mean diameter Dm(pcm) and an aspect ratio RF2 with RF2=DM(pcm)/Dm(pcm), characterized in that: Dm(pcm) 1.5 and/or RF2>1.5.
Abstract:
Composite adsorbent beads have a porous and non-adsorbent core comprising at least one inorganic material and a porous and adsorbent shell comprising at least one adsorbent layer comprising a porous adsorbent material on the surface of the core. The core preferably comprises agglomerated inorganic particles having a mean particle size equal to or smaller than the mean particle size of the surrounding agglomerated adsorbent particles. The beads preferably are manufactured by calcining together a non-sintered core and the adsorbent layer. The beads can be used at the outlet end of an adsorption column to improve performance.
Abstract:
The method enables control over carbon pore structure to provide sorbents that are particularly advantageous for the adsorption of specific gases. It involves preparation of a sorbent precursor material, carbonization of the precursor material, and, usually, activation of the carbonized material. The resultant material is subjected to heat treatment and/or to surface conditioning by a reducing gas at elevated temperatures.
Abstract:
A multi-chamber canister for a pressure swing absorption system within a general housing assembly. The chambers include a first molecular sieve chamber for receiving a first molecular sieve for separating air from the ambient environment into a concentrated gas and at least a second molecular sieve chamber disposed within the housing assembly for receiving a second molecular sieve for separating air from the ambient environment into a concentrated gas component. Furthermore, a supply chamber is disposed within the housing for receiving air from the ambient environment and for communicating air to either first or second molecular sieve chambers.