摘要:
An improved semiconductor-on-insulator (SOI) substrate is provided, which contains a patterned buried insulator layer at varying depths. Specifically, the SOI substrate has a substantially planar upper surface and comprises: (1) first regions that do not contain any buried insulator, (2) second regions that contain first portions of the patterned buried insulator layer at a first depth (i.e., measured from the planar upper surface of the SOI substrate), and (3) third regions that contain second portions of the patterned buried insulator layer at a second depth, where the first depth is larger than the second depth. One or more field effect transistors (FETs) can be formed in the SOI substrate. For example, the FETs may comprise: channel regions in the first regions of the SOI substrate, source and drain regions in the second regions of the SOI substrate, and source/drain extension regions in the third regions of the SOI substrate.
摘要:
A pedestal is formed out of the pad layer such that two edges of the pedestal coincide with a border of the wells as implanted. An extended pedestal is formed over the pedestal by depositing a conformal dielectric layer. The area of the extended pedestal is exposed the semiconductor surface below is recessed to a recess depth. Other trenches including at least one intra-well isolation trench are lithographically patterned. After a reactive ion etch, both an inter-well isolation trench and at least one intra-well isolation trench are formed. The width of the inter-well isolation trench may be reduced due to the deeper bottom surface compared to the prior art structures. The boundary between the p-well and the n-well below the inter-well isolation structure is self-aligned to the middle of the inter-well isolation structure.
摘要:
An improved semiconductor-on-insulator (SOI) substrate is provided, which contains a patterned buried insulator layer at varying depths. Specifically, the SOI substrate has a substantially planar upper surface and comprises: (1) first regions that do not contain any buried insulator, (2) second regions that contain first portions of the patterned buried insulator layer at a first depth (i.e., measured from the planar upper surface of the SOI substrate), and (3) third regions that contain second portions of the patterned buried insulator layer at a second depth, where the first depth is larger than the second depth. One or more field effect transistors (FETs) can be formed in the SOI substrate. For example, the FETs may comprise: channel regions in the first regions of the SOI substrate, source and drain regions in the second regions of the SOI substrate, and source/drain extension regions in the third regions of the SOI substrate.
摘要:
An improved semiconductor-on-insulator (SOI) substrate is provided, which contains a patterned buried insulator layer at varying depths. Specifically, the SOI substrate has a substantially planar upper surface and comprises: (1) first regions that do not contain any buried insulator, (2) second regions that contain first portions of the patterned buried insulator layer at a first depth (i.e., measured from the planar upper surface of the SOI substrate), and (3) third regions that contain second portions of the patterned buried insulator layer at a second depth, where the first depth is larger than the second depth. One or more field effect transistors (FETs) can be formed in the SOI substrate. For example, the FETs may comprise: channel regions in the first regions of the SOI substrate, source and drain regions in the second regions of the SOI substrate, and source/drain extension regions in the third regions of the SOI substrate.
摘要:
A pedestal is formed out of the pad layer such that two edges of the pedestal coincide with a border of the wells as implanted. An extended pedestal is formed over the pedestal by depositing a conformal dielectric layer. The area of the extended pedestal is exposed the semiconductor surface below is recessed to a recess depth. Other trenches including at least one intra-well isolation trench are lithographically patterned. After a reactive ion etch, both an inter-well isolation trench and at least one intra-well isolation trench are formed. The width of the inter-well isolation trench may be reduced due to the deeper bottom surface compared to the prior art structures. The boundary between the p-well and the n-well below the inter-well isolation structure is self-aligned to the middle of the inter-well isolation structure.
摘要:
An n-type field effect transistor (NFET) and methods of forming a halo for an NFET to control the short channel effect are disclosed. One method includes forming a gate over a silicon substrate; recessing the silicon adjacent to the gate; forming a halo by epitaxially growing boron in-situ doped silicon germanium (SiGe) in the recess; and epitaxially growing silicon over the silicon germanium. Alternatively, the halo can be formed by ion implanting boron into an embedded SiGe region within the silicon substrate. The resulting NFET includes a boron doped SiGe halo embedded within the silicon substrate. The embedded SiGe layer may be a relaxed layer without inserting strain in the channel. The high solid solubility of boron in SiGe and low diffusion rate allows formation of a halo that will maintain the sharp profile, which provides better control of the short channel effect and increasing control over NFET threshold voltage roll-off.
摘要:
The present invention relates to high performance three-dimensional (3D) field effect transistors (FETs). Specifically, a 3D semiconductor structure having a bottom surface oriented along one of a first set of equivalent crystal planes and multiple additional surfaces oriented along a second, different set of equivalent crystal planes can be used to form a high performance 3D FET with carrier channels oriented along the second, different set of equivalent crystal planes. More importantly, such a 3D semiconductor structure can be readily formed over the same substrate with an additional 3D semiconductor structure having a bottom surface and multiple additional surfaces all oriented along the first set of equivalent crystal planes. The additional 3D semiconductor structure can be used to form an additional 3D FET, which is complementary to the above-described 3D FET and has carrier channels oriented along the first set of equivalent crystal planes.
摘要翻译:本发明涉及高性能三维(3D)场效应晶体管(FET)。 具体而言,可以使用具有沿着第一组等效晶面中的一个取向的底表面和沿着第二不同组的等效晶面取向的多个附加表面的3D半导体结构,以形成具有载体通道定向的高性能3D FET 沿着第二个不同组的等效晶面。 更重要的是,这种3D半导体结构可以容易地在具有底表面和多个附加表面的附加3D半导体结构的同一衬底上形成,所述另外的三维半导体结构全部沿着第一组等效晶面取向。 附加的3D半导体结构可以用于形成附加的3D FET,其与上述3D FET互补,并且具有沿着第一组等效晶面取向的载流子通道。
摘要:
A fin-type field effect transistor (finFET) structure comprises a substrate having a planar upper surface, an elongated fin on the planar upper surface of the substrate (wherein the length and the height of the fin are greater that the width of the fin) and an elongated gate conductor on the planar upper surface of the substrate. The length and the height of the gate conductor are greater than the width of the gate conductor. The fin comprises a center section comprising a semiconducting channel region and end sections distal to the channel region. The end sections of the fin comprise conductive source and drain regions. The gate conductor covers the channel region of the fin. The sidewalls of the channel region comprise a different crystal orientation than the sidewalls of the source and drain regions.
摘要:
A method is provided of fabricating complementary stressed semiconductor devices, e.g., an NFET having a tensile stressed channel and a PFET having a compressive stressed channel. In such method, a first semiconductor region having a lattice constant larger than silicon can be epitaxially grown on an underlying semiconductor region of a substrate. The first semiconductor region can be grown laterally adjacent to a second semiconductor region which has a lattice constant smaller than that of silicon. Layers consisting essentially of silicon can be grown epitaxially onto exposed major surfaces of the first and second semiconductor regions after which gates can be formed which overlie the epitaxially grown silicon layers. Portions of the first and second semiconductor regions adjacent to the gates can be removed to form recesses. Regions consisting essentially of silicon can be grown within the recesses to form embedded silicon regions. Source and drain regions then can be formed in the embedded silicon regions. The difference between the lattice constant of silicon and that of the underlying first and second regions results in tensile stressed silicon over the first semiconductor region and compressive stressed silicon over the second semiconductor region.
摘要:
The present invention relates to improved complementary metal-oxide-semiconductor (CMOS) devices with stressed channel regions. Specifically, each improved CMOS device comprises an field effect transistor (FET) having a channel region located in a semiconductor device structure, which has a top surface oriented along one of a first set of equivalent crystal planes and one or more additional surfaces oriented along a second, different set of equivalent crystal planes. Such additional surfaces can be readily formed by crystallographic etching. Further, one or more stressor layers with intrinsic compressive or tensile stress are located over the additional surfaces of the semiconductor device structure and are arranged and constructed to apply tensile or compressive stress to the channel region of the FET. Such stressor layers can be formed by pseudomorphic growth of a semiconductor material having a lattice constant different from the semiconductor device structure.