Abstract:
A component incorporating a dielectric element such as a polymeric film with leads and terminals thereon is assembled with a semiconductor chip and bond regions of the leads are connected to contacts of the chip. At least one lead incorporates a plural set of connecting regions connecting the bond region of that lead to a plurality of terminals. One or more of the connecting regions in each such plural set are severed so as to leave less than all of the terminals associated with each such plural set connected to the contacts of the chip.
Abstract:
A semiconductor chip mounting component includes a support structure adapted to engage a semiconductor chip. The support structure has a top surface, a bottom surface, and a gap extending through the support structure for defining first and second portions of the support structure on opposite sides of the gap. The support structure includes at least one elongated bus disposed alongside the gap, on the second portion of the support structure. The support structure includes a plurality of electrically conductive leads, each lead having a connection section extending across the gap, the connection section having a first end disposed on the first portion of the support structure, and a second end secured to the bus. Each lead includes a frangible section disposed between the first and second ends of the connection section, the frangible section having a cross-sectional area that is smaller than a cross-sectional area of the connection section. The gap is open at the bottom surface of the support structure. A semiconductor chip is disposed beneath the bottom surface of the support structure. The leads are adapted to be bonded to contacts on the semiconductor chip by breaking the frangible sections of the leads so as to disconnect the second ends of the leads from the bus and engage the leads with the contacts of the semiconductor chip.
Abstract:
A method of treating an interposer layer includes disposing an interposer layer between a semiconductor wafer and a substrate so that voids within the interposer layer are sealed and applying pressure to substantially eliminate the voids. A method of creating a substantially void-free interposer layer includes injecting the interposer layer between a wafer and a substrate and applying pressure to substantially remove the voids.
Abstract:
Semiconductor chip packages and methods of fabricating the same. The package includes a thermally conductive protective structure having an indentation open to a front side and a flange surface at least partially surrounding the indentation and facing to the front of the structure. A chip is disposed in the indentation so that the front surface of the chip, with contacts thereon, faces toward the front of the structure. A flexible dielectric film having terminals thereon is placed on the flange surface, and a compliant material is disposed between the film and the flange surface. The terminals on the film are connected to the contacts on the chip. The individual terminals on the film are movable with respect to the protective structure, which facilitates mounting and compensation for thermal expansion.
Abstract:
A method of making a microelectronic package includes providing a first microelectronic element having electrically conductive parts and including first and second surfaces and providing a compliant element including a releasable adhesive over the first surface of the first microelectronic element. A second microelectronic element having electrically conductive parts is abutted against the releasable adhesive so that the second microelectronic element is releasably assembled to the first microelectronic element and the electrically conductive parts of the first and second microelectronic elements are connected to one another. The releasably assembled package is tested to determine whether the package has been properly assembled. A curable liquid is then introduced between the first and second microelectronic elements of a properly assembled package and the curable liquid is cured to permanently assemble the first and second microelectronic elements together.
Abstract:
Semiconductor chip assemblies incorporating flexible, sheet-like elements having terminals thereon overlying the front or rear face of the chip to provide a compact unit. The terminals on the sheet-like element are movable with respect to the chip, so as to compensate for thermal expansion. A resilient element such as a compliant layer interposed between the chip and terminals permits independent movement of the individual terminals toward the chip driving engagement with a test probe assembly so as to permit reliable engagement despite tolerances.
Abstract:
An interposer for interconnection between microelectronic circuit panels has contacts at its surfaces. Each contact extends from a central conductor, and has a peripheral portion adapted to contract radially inwardly toward the central conductor response to a force applied by a contact pad defining a central hole on the engaged circuit panel. Thus, when the circuit panels are compressed with the interposers, the contacts contract radially inwardly and wipe across the pads. The wiping action facilitates bonding of the contacts to the pads, as by friction welding, or by a conductive bonding material carried on the contacts themselves.
Abstract:
A packaged semiconductor chip including the chip, and a package element such as a heat sink is made by connecting flexible leads between contacts on the chip and terminals on a dielectric element such as a sheet or plate and moving the sheet or plate away from the chip, and injecting a liquid material to form a compliant layer filling the space between the package element and the dielectric element, and surrounding the leads. The dielectric element and package element extend outwardly beyond the edges of the chip, and physically protect the chip. The assembly may be handled and mounted by conventional surface mounting techniques. The assembly may include additional circuit elements such as capacitors used in conjunction with the chip.
Abstract:
An interposer for interconnection between microelectronic circuit panels has contacts at its surfaces. Each contact extends from a central conductor, and has a peripheral portion adapted to contract radially inwardly toward the central conductor response to a force applied by a contact pad defining a central hole on the engaged circuit panel. Thus, when the circuit panels are compressed with the interposers, the contacts contract radially inwardly and wipe across the pads. The wiping action facilitates bonding of the contacts to the pads, as by friction welding, or by a conductive bonding material carried on the contacts themselves.
Abstract:
A semiconductor chip mounting component includes a support having a top surface, a bottom surface, a central portion, a peripheral portion surrounding the central portion, and a gap extending through the support structure between the top and bottom. The component includes a plurality of electrically conductive leads, each lead having a connection section extending across the gap, the connection section having a first end disposed on the support structure on one side of the gap, a second end secured to the support structure on an opposite side of the gap, and a frangible section between the first and second ends. The component also includes at least one elongated bus disposed on the peripheral portion of the support structure alongside the gap, whereby each lead extends across the gap and is connected to the bus.