Abstract:
A termination configuration of a silicon carbide insulating gate type semiconductor device includes a semiconductor layer of a first conductivity type having a first main face, a gate electrode, and a source interconnection, as well as a circumferential resurf region. The semiconductor layer includes a body region of a second conductivity type, a source region of the first conductivity type, a contact region of the second conductivity type, and a circumferential resurf region of the second conductivity type. A width of a portion of the circumferential resurf region excluding the body region is greater than or equal to ½ the thickness of at least the semiconductor layer. A silicon carbide insulating gate type semiconductor device of high breakdown voltage and high performance can be provided.
Abstract:
A method of cleaning a SiC semiconductor includes the steps of forming an oxide film at the surface of a SiC semiconductor, and removing the oxide film. At the step of forming an oxide film, an oxide film is formed using ozone water having a concentration greater than or equal to 30 ppm. The forming step preferably includes the step of heating at least one of the surface of the SiC semiconductor and the ozone water. Thus, there can be obtained a method of cleaning a SiC semiconductor that can exhibit cleaning effect on the SiC semiconductor.
Abstract:
The invention offers a method of producing a semiconductor device that can suppress the worsening of the property due to surface roughening of a wafer by sufficiently suppressing the surface roughening of the wafer in the heat treatment step and a semiconductor device in which the worsening of the property caused by the surface roughening is suppressed. The method of producing a MOSFET as a semiconductor device is provided with a step of preparing a wafer 3 made of silicon carbide and an activation annealing step that performs activation annealing by heating the wafer 3. In the activation annealing step, the wafer 3 is heated in an atmosphere containing a vapor of silicon carbide generated from the SiC piece 61, which is a generating source other than the wafer 3.
Abstract:
A MOSFET which is a semiconductor device capable of achieving a stable reverse breakdown voltage and reduced on-resistance includes a SiC wafer of an n conductivity type, a plurality of p bodies of a p conductivity type formed to include a first main surface of the SiC wafer, and n+ source regions of the n conductivity type formed in regions surrounded by the plurality of p bodies, respectively, when viewed two-dimensionally. Each of the p bodies has a circular shape when viewed two-dimensionally, and each of the n+ source regions is arranged concentrically with each of the p bodies and has a circular shape when viewed two-dimensionally. Each of the plurality of p bodies is arranged to be positioned at a vertex of a regular hexagon when viewed two-dimensionally.
Abstract:
A drift layer has a thickness direction throughout which a current flows and has an impurity concentration N1d for a first conductivity type. A body region is provided on a portion of the drift layer, has a channel to be switched by a gate electrode, has an impurity concentration N1b for the first conductivity type, and has an impurity concentration N2b for the second conductivity type greater than the impurity concentration N1b. A JFET region is disposed adjacent to the body region on the drift layer, has an impurity concentration N1j for the first conductivity type, and has an impurity concentration N2j for the second conductivity type smaller than the impurity concentration N1j. N1j−N2j>N1d and N2j
Abstract:
A semiconductor device includes: a substrate made of silicon carbide and having a main surface having an off angle of not less than −3° and not more than +5° relative to a (0-33-8) plane in a direction; a p type layer made of silicon carbide and formed on the main surface of the substrate by means of epitaxial growth; and an oxide film formed in contact with a surface of the p type layer. A maximum value of nitrogen atom concentration is 1×1021 cm−3 or greater in a region within 10 nm from an interface between the p type layer and the oxide film.
Abstract:
A MOSFET includes a silicon carbide (SiC) substrate having a main surface having an off angle of not less than 50° and not more than 65° relative to a {0001} plane; a semiconductor layer formed on the main surface of the SiC substrate; and an insulating film formed in contact with a surface of the semiconductor layer. When the insulating film has a thickness of not less than 30 nm and not more than 46 nm, the threshold voltage thereof is not more than 2.3V. When the insulating film has a thickness of more than 46 nm and not more than 100 nm, the threshold voltage thereof is more than 2.3 V and not more than 4.9 V.
Abstract:
A method for manufacturing a MOSFET includes the steps of: forming a gate oxide film on an active layer, forming a gate electrode on the gate oxide film, forming a source contact electrode in ohmic contact with the active layer, and forming an interlayer insulating film made of silicon dioxide so as to cover the gate electrode after the source contact electrode is formed. The step of forming a source contact electrode includes the steps of forming a metal layer including aluminum so as to be in contact with the active layer, and alloying the metal layer.
Abstract:
A MOSFET includes a silicon carbide substrate, a drift layer made of silicon carbide and including a main surface having an off angle of 50° or more and 65° or less with respect to a {0001} plane, and a gate oxide film formed on and in contact with the main surface of the drift layer. The drift layer includes a p type body region formed to include a region in contact with the gate oxide film. The p type body region has an impurity density of 5×1016 cm−3 or more. A plurality of p type regions of p conductivity type located apart from one another in a direction perpendicular to a thickness direction of the drift layer are arranged in a region in the drift layer lying between the p type body region and the silicon carbide substrate.
Abstract translation:MOSFET包括碳化硅衬底,由碳化硅制成的漂移层,并且包括相对于{0001}面具有50°以上且65°以下的偏离角的主表面,以及形成在 并与漂移层的主表面接触。 漂移层包括形成为包括与栅氧化膜接触的区域的p型体区。 p型体区的杂质浓度为5×10 16 cm -3以上。 在垂直于漂移层的厚度方向的方向上彼此分离的p导电类型的多个p型区域布置在位于p型体区域和碳化硅衬底之间的漂移层中的区域中。
Abstract:
An MOSFET includes a silicon carbide substrate, an active layer, a gate oxide film, and a gate electrode. The active layer includes a body region where an inversion layer is formed at a region in contact with the gate oxide film by application of voltage to the gate electrode. The body region includes a low concentration region arranged at a region where an inversion layer is formed, and containing impurities of low concentration, and a high concentration region adjacent to the low concentration region in the carrier mobile direction in the inversion layer, arranged in a region where the inversion layer is formed, and containing impurities higher in concentration than in the low concentration region.