Abstract:
Methods and associated devices including the fabrication of a semiconductor structure are described that include epitaxially growing a stack of layers alternating between a first composition and a second composition. The stack of layers extends across a first region and a second region of a semiconductor substrate. The stack of layers in the second region of the semiconductor substrate may be etched to form an opening. A passivation process is then performed that includes introducing chlorine to at least one surface of the opening. After performing the passivation process, an epitaxial liner layer is grown in the opening.
Abstract:
A semiconductor structure includes a semiconductor substrate; fin active regions protruded above the semiconductor substrate; and a gate stack disposed on the fin active regions; wherein the gate stack includes a high-k dielectric material layer, and various metal layers disposed on the high-k dielectric material layer. The gate stack has an uneven profile in a sectional view with a first dimension D1 at a top surface, a second dimension D2 at a bottom surface, and a third dimension D3 at a location between the top surface and the bottom surface, and wherein each of D1 and D2 is greater than D3.
Abstract:
A semiconductor substructure with improved performance and a method of forming the same is described. In one embodiment, the semiconductor substructure includes a substrate, having an upper surface; a gate structure formed over the substrate; a spacer formed along a sidewall of the gate structure; and a source/drain structure disposed adjacent the gate structure. The source/drain structures is formed of a strain material and is disposed in an recess that extends below the upper surface of the substrate. An interface between the spacer and the source-drain structure can be at least 2 nm above the upper surface of the substrate.
Abstract:
A semiconductor substructure with improved performance and a method of forming the same is described. In one embodiment, the semiconductor substructure includes a substrate, having an upper surface; a gate structure formed over the substrate; a spacer formed along a sidewall of the gate structure; and a source/drain structure disposed adjacent the gate structure. The source/drain structures is formed of a strain material and is disposed in an recess that extends below the upper surface of the substrate. An interface between the spacer and the source-drain structure can be at least 2 nm above the upper surface of the substrate.
Abstract:
A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.