Abstract:
Some embodiments of the present disclosure are directed to a device. The device includes a substrate comprising a silicon layer disposed over an insulating layer. The substrate includes a transistor device region and a radio-frequency (RF) region. An interconnect structure is disposed over the substrate and includes a plurality of metal layers disposed within a dielectric structure. A handle substrate is disposed over an upper surface of the interconnect structure. A trapping layer separates the interconnect structure and the handle substrate.
Abstract:
The present disclosure relates to a semiconductor substrate including, a first silicon layer comprising an upper surface with protrusions extending vertically with respect to the upper surface. An isolation layer is arranged over the upper surface meeting the first silicon layer at an interface, and a second silicon layer is arranged over the isolation layer. A method of manufacturing the semiconductor substrate is also provided.
Abstract:
Some embodiments of the present disclosure are directed to a device. The device includes a substrate comprising a silicon layer disposed over an insulating layer. The substrate includes a transistor device region and a radio-frequency (RF) region. An interconnect structure is disposed over the substrate and includes a plurality of metal layers disposed within a dielectric structure. A handle substrate is disposed over an upper surface of the interconnect structure. A trapping layer separates the interconnect structure and the handle substrate.
Abstract:
In accordance with some embodiments, a semiconductor device is provided. The semiconductor device structure includes a substrate, and the substrate has a device region and an edge region. The semiconductor device structure also includes a silicon layer formed on the substrate and a transistor formed on the silicon layer. The transistor is formed at the device region of the substrate. The semiconductor device structure further includes a metal ring formed in the silicon layer. The metal ring is formed at the edge region of the substrate, and the transistor is surrounded by the metal ring.
Abstract:
The present disclosure relates to a semiconductor substrate including, a first silicon layer comprising an upper surface with protrusions extending vertically with respect to the upper surface. An isolation layer is arranged over the upper surface meeting the first silicon layer at an interface, and a second silicon layer is arranged over the isolation layer. A method of manufacturing the semiconductor substrate is also provided.
Abstract:
Some embodiments of the present disclosure are directed to a device. The device includes a substrate comprising a silicon layer disposed over an insulating layer. The substrate includes a transistor device region and a radio-frequency (RF) region. An interconnect structure is disposed over the substrate and includes a plurality of metal layers disposed within a dielectric structure. A handle substrate is disposed over an upper surface of the interconnect structure. A trapping layer separates the interconnect structure and the handle substrate.
Abstract:
Embodiments of mechanisms for forming a semiconductor device structure with floating spacers are provided. The semiconductor device structure includes a silicon-on-insulator (SOI) substrate and a gate stack formed on the SOI substrate. The semiconductor device structure also includes gate spacers formed on sidewalls of the gate stack. The gate spacers include a floating spacer. The semiconductor device structure further includes a contact etch stop layer formed on the gate stack and the gate spacers. The contact etch stop layer is formed between the floating spacer and the SOI substrate.
Abstract:
Some embodiments of the present disclosure are directed to a device. The device includes a substrate comprising a silicon layer disposed over an insulating layer. The substrate includes a transistor device region and a radio-frequency (RF) region. An interconnect structure is disposed over the substrate and includes a plurality of metal layers disposed within a dielectric structure. A handle substrate is disposed over an upper surface of the interconnect structure. A trapping layer separates the interconnect structure and the handle substrate.
Abstract:
Embodiments for forming a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a buried oxide layer formed over the substrate. An interface layer is formed between the substrate and the buried oxide layer. The semiconductor device structure also includes a silicon layer formed over the buried oxide layer; and a polysilicon layer formed over the substrate and in a deep trench. The polysilicon layer extends through the silicon layer, the buried oxide layer and the interface layer.
Abstract:
Some embodiments of the present disclosure are directed to a device. The device includes a substrate comprising a silicon layer disposed over an insulating layer. The substrate includes a transistor device region and a radio-frequency (RF) region. An interconnect structure is disposed over the substrate and includes a plurality of metal layers disposed within a dielectric structure. A handle substrate is disposed over an upper surface of the interconnect structure. A trapping layer separates the interconnect structure and the handle substrate.