Abstract:
A semiconductor device according to the present invention includes on the main surface of a p substrate a storing circuit region and peripheral circuit regions. An n well surrounds a p well including the storing circuit region and a p well including the peripheral circuit regions. As a result, a capacitance element is formed in the semiconductor substrate. It is possible to miniaturize the semiconductor device, and to improve reliability of connection between elements.
Abstract:
A plurality of sub chips are formed on a chip. An input/output buffer region is arranged around the plurality of sub chips. Each sub chip includes a sub chip control circuit region and a plurality of memory cell array blocks. Each memory cell array block includes a memory cell array region, a row decoder and control circuit region, a sense amplifier region and an input/output latch region.
Abstract:
A semiconductor memory device includes a plurality of memory blocks, i main row or column select lines extending over the plurality of memory blocks, and a decoder for selecting one of the main row or column select lines in accordance with an applied address signal. The decoder includes i outputs. Each of the memory blocks includes a plurality of memory cells arranged in rows and columns and at least (i+1) sub row or column select lines each for selecting one row or one column of memory cells. A shift redundancy circuit is provided for each of the memory blocks, for connecting the main row or column select line and the sub row or column select line. The shift redundancy circuit includes a switch circuit for connecting one main row or column select line to one of the plurality of adjacent sub row or column select lines, and a circuit for setting a connection path of the switch circuit. The shift redundancy circuit connects successively adjacent sub row or column select lines to main row or column select lines in one to one correspondence except a defective sub row or column select line associated with a defective bit.
Abstract:
A semiconductor device having amplifying circuits provided near corresponding bonding pads receiving external signals, and positioned between the bonding pads and internal circuits to which such external signals are to be applied. The device includes a control signal generating circuit for the amplifying circuits which is not provided in conventional semiconductor devices. In response to external control signals, the control signal generating circuit generates internal control signals for controlling electric paths between a power supply and ground in the amplifying circuits. During the standby period of the semiconductor device, the paths between the power supply and ground are cut regardless of the potential of the corresponding bonding pads, preventing flow of a through current.
Abstract:
A semiconductor memory device includes a memory array. The bit line pairs of the odd number order in the memory array belong to a first group, and the bit line pairs of the even number order belong to a second group. A first amplifier is connected to each bit line pair. Corresponding to the first group, write buses read buses and a read/test circuit are provided. Corresponding to the second group, write buses read buses and a read/test circuit are provided. A column decoder selects a plurality of bit line pairs simultaneously at the time of testing. At the time of testing, each of the read/test circuits compares data read out from the plurality of bit line pairs belonging to the corresponding group with a given expected data for providing the comparison result.
Abstract:
In a general read out operation, data read out from a memory cell array is amplified by a preamplifier group. The amplified data is provided to a selector unit. The selector unit responds to a bit organization select signal to select data according to a predetermined bit configuration. The selected data is provided to a data bus. In a test mode, the selector unit responds to a test mode signal to provide a test result to a data bus corresponding to a predetermined bit organization. Therefore, only the required data bus is used according to the bit organization and the test mode.
Abstract:
Column repairing circuits 7a, 7b for repairing a DRAM in which there are defective memory cells in two columns are disclosed. The connection state of switching elements or circuits 51-5n, 61-6n, 71-7 (n+1), 81-8 (n+1) is determined as illustrated by appropriately disconnecting fuses in fuse links provided respectively in circuits 7a, 7b. Accordingly, column selecting lines Y2a and Y (n+1) b in memory array blocks 891a, 891b are not activated. The two repairing circuits 7a, 7b are provided spaced apart from each other on a semiconductor substrate, so that excessive concentration of fuse elements and switching elements or circuits is prevented.
Abstract:
A clock buffer of a DRAM includes: a first NAND gate which is driven by a first internal power supply voltage (2.5 V) and which determines the level of an input clock signal if the DRAM is used for a TTL-system interface (MLV=2.5 V); and a second NAND gate which is driven by a second internal power supply voltage (1.8 V) and which determines the level of the input clock signal if the DRAM is used for a 1.8 V-system interface (MLV=0 V). Accordingly, in each of the first and second NAND gates, sizes of four MOS transistors can be set at optimum values, respectively.
Abstract:
A semiconductor memory device includes a first conductivity type well in a first conductivity type semiconductor substrate surrounded by a second conductivity type well, one of a memory cell and an external input circuit arranged on the first conductivity type well and the other disposed outside the second conductivity type well. A predetermined power supply voltage is applied to the second conductivity type well and the first conductivity type well is connected to ground. In the structure, charge carriers injected from the external input circuit are absorbed in the second conductivity type well. As a result, the charge carriers are prevented from reaching the memory cell and destroying data stored therein. Therefore, it is possible to miniaturize transistors and increase integration density of dynamic random access memory devices without degrading the source to drain dielectric strength.
Abstract:
The green vegetable puree production process according to the present invention, which contains a grinding step and an acid addition step and does not include a heating step, produces an unheated green vegetable puree having no catalase activity, containing an acid or acids and having a pH of 2.7 to 4.1. The puree sufficiently maintains the original flavor and taste and freshness of vegetables and is suitable for use in the preparation of foods, especially for vegetable juices.