Abstract:
In a semi-conducting integrated circuit, there is made a light detection circuit, the output signal of which can be used to counter manipulations by dishonest persons who undertake a decapsulation or a removal from the card when the integrated circuit is inserted in a bank type card, or even a depassivation of the upper protective layer of this integrated circuit, in order to reveal the secret functioning of the circuit or to modify its characteristics. The detector comprises a current generator delivering a current of limited intensity which flows into a reversed biased electronic junction. When the junction is subjected to light, the reverse current that can be allowed into the junction increases. Since the current generator is not capable of putting through stronger current, the voltage at the terminals of the junction drops. This drop in voltage is used as information that reveals the illumination.
Abstract:
The disclosure concerns the safety of the confidential information contained in integrated circuits. In a certain number of integrated circuit applications and, more particularly, in the circuits contained in cards known as "chip cards", it is necessary to prohibit access by unauthorized persons to confidential information stored in a memory of the circuit. To prevent the fraudulent practice of examining the current consumption at the terminals of the integrated circuit during an operation of reading or writing in the memory, a protection circuit is used. This protection circuit actuates the simulation, according to a pseudo-random sequence generated by a generator, of current consumption values identical to those of real memory cells.
Abstract:
A supply-voltage-monitoring circuit, for low-power integrated circuits, in which charge-sharing through a switched-capacitor chain is used to couple the supply voltage to a dynamic sensing node. The dynamic sensing node drives a half-latch, which is stable in a no-alarm condition.
Abstract:
To avoid differentiation, in manufacture, between the random-access memory cells and read-only memory cells of the same memory array, the memory cells are all made by the same technology. These memory cells employ essentially floating gate transistors. The random-access memory cells are programmed, in a stand way, by injecting or not electronic charges in the floating gates of the transistors. The read-only memory cells are put in a programmed or an unprogrammed state by the selective implantation of impurities or not in the conduction channels of the floating gate transistors of these memory cells. There is an improved concealment of the content, which is designed to remain concealed, of these memory cells, at the same time, the conditions for making prototypes to order are improved.
Abstract:
The access to memory words of an integrated circuit is protected by the creation of a decision table that receives addresses of instruction words and/or data words to be protected and that receives also addresses of the control bits of a control word assigned to a word to be protected. It can be shown that this mode of action provides greater security through the use of a decision table made in wired circuit form as well as greater flexibility through the programmable quality of the control words assigned to each memory word to be controlled.
Abstract:
A supply-voltage-monitoring circuit, for low-power integrated circuits, in which charge-sharing through a switched-capacitor chain is used to couple the supply voltage to a dynamic sensing node. The dynamic sensing node drives a half-latch, which is stable in a no-alarm condition. In this circuit, the state of the output gets switched over in the first phase if the voltage at the terminals of the capacitor at the start of this stage (this voltage being equal to a fraction of the input voltage) crosses a determined threshold. This threshold is determined as a function of technical parameters for the construction of the circuit. These technical parameters are chiefly the threshold voltage of the transistor and the characteristics of the transistors that form the locking circuit.
Abstract:
In order to modify the configuration of an integrated circuit, for example to restrict access by the user to certain functions or certain pieces of data of the circuit, the integrated circuit is provided with a first electronic lock capable of being locked or unlocked during a stage for the testing of the integrated circuit and capable of being irreversibly locked after the end of the testing stage, and a second electronic lock capable of being unlocked only so long as the first lock is unlocked. In this way, the entire circuit can be tested in the form in which it is presented to the user, the locking of the locks being, so to speak, simulated during the test.
Abstract:
To form a ramp signal for the programming of a memory cell without losing excess voltage in a control circuit, the output of a voltage pull-up circuit is connected to the programming input using a P type transistor. It is shown that this P type transistor then charges the memory array at constant current, prompting a linear increase of the voltage. This results in preventing the memory cell that is to be programmed from being subjected to excessively sudden variations of voltage. It is shown that by acting in this way, the integrated circuit can be made to work even with very low voltages.
Abstract:
The present invention concerns a method for the numerical scrambling by permutation of data bits in a programmable circuit comprising a control unit and at least one data bus (DBUS) to transmit data between the control unit and several memory circuits. It consists of having data on the bus either in a scrambled form or in an unscrambled form according to whether it is instructions data or not. And data in some of the memories is scrambled. The present invention also concerns a method for realising a permutation circuit.
Abstract:
An integrated circuit for a passive unit counting memory card comprises p levels (10, 11, 12) of data counting memory. The levels contain corresponding numbers of cases n.sub.1 . . . n.sub.p, a write operation being achieved in a case of an upper rank level each time all the cases of the lower rank level have been enabled, the cases of the lower levels then being erased. The circuit comprises p-1 ghost levels (21, 22) identical to the p-1 upper rank levels of the p counting levels. The addressing logic of the ghost levels is such that the cases of ghost levels are addressed in write phase simultaneously with the cases of the corresponding counting levels and, after a write phase, are addressed in erase phase simultaneously with the cases of the levels of lower rank than the one that has just been enabled.