Abstract:
Provided is a display device with extremely high resolution, a display device with higher display quality, a display device with improved viewing angle characteristics, or a flexible display device. Same-color subpixels are arranged in a zigzag pattern in a predetermined direction. In other words, when attention is paid to a subpixel, another two subpixels exhibiting the same color as the subpixel are preferably located upper right and lower right or upper left and lower left. Each pixel includes three subpixels arranged in an L shape. In addition, two pixels are combined so that pixel units including subpixel are arranged in matrix of 3×2.
Abstract:
A display device in which a peripheral circuit portion has high operation stability is provided. The display device includes a first substrate and a second substrate. A first insulating layer is provided over a first surface of the first substrate. A second insulating layer is provided over a first surface of the second substrate. The first surface of the first substrate and the first surface of the second substrate face each other. An adhesive layer is provided between the first insulating layer and the second insulating layer. A protective film in contact with the first substrate, the first insulating layer, the adhesive layer, the second insulating layer, and the second substrate is formed in the vicinity of a peripheral portion of the first substrate and the second substrate.
Abstract:
A light-emitting device can be folded in such a manner that a flexible light-emitting panel is supported by a plurality of housings which are provided spaced from each other and the light-emitting panel is bent so that surfaces of adjacent housings are in contact with each other. Furthermore, in the light-emitting device, in which part or the whole of the housings have magnetism, the two adjacent housings can be fixed to each other by a magnetic force when the light-emitting device is used in a folded state.
Abstract:
Manufacturing equipment with which steps from processing to sealing of an organic compound film can be continuously performed is provided. The manufacturing equipment enables continuous processing of a patterning step of a light-emitting device and a light-receiving device and a step of sealing top and side surfaces of organic layers to prevent the top and side surfaces from being exposed to the air, which allows formation of the light-emitting device and the light-receiving device each of which has a minute structure, high luminous, and high reliability. This manufacturing equipment can be built in an in-line manufacturing system where apparatuses are arranged according to the order of process steps for the light-emitting device and the light-receiving device, resulting in high throughput manufacturing.
Abstract:
To provide a novel display panel that is highly convenient or reliable. To provide a novel input and output device that is highly convenient or reliable. To provide a novel data processing device that is highly convenient or reliable. To provide a method for manufacturing a novel display panel that is highly convenient or reliable. The display panel includes a pixel, a third conductive film electrically connected to the pixel, an insulating film including an opening portion overlapping with the third conductive film, and an electrode including a first region in contact with the third conductive film and a second region functioning as a contact point.
Abstract:
A highly reliable display device or electronic device is provided. The display device includes a first electrode, a second electrode, a light-emitting layer between the first electrode and the second electrode, and a protective film over the second electrode. The protective film includes a first insulating film and a second insulating film over the first insulating film. The first insulating film includes one or more of aluminum oxide, hafnium oxide, and zirconium oxide, and the second insulating film includes one or more of aluminum oxide, hafnium oxide, and zirconium oxide. A composition of the first insulating film is different from a composition of the second insulating film. A water vapor transmission rate of the protective film is lower than 1×10−2 g/(m2·day).
Abstract:
An object of this invention is to provide a highly portable light-emitting device or a highly browsable light-emitting device. The light-emitting device includes a joint portion, and a plurality of light-emitting units apart from each other with the joint portion positioned therebetween. The joint portion and the light-emitting units are flexible. The joint portion can be bent to a curvature radius smaller than a curvature radius to which the light-emitting unit can be bent. The light-emitting unit is supplied with a signal through a side not adjacent to the joint portion or is supplied with a signal by wireless communication.
Abstract:
The inventors have reached the idea of a film formation apparatus including a film formation chamber, a removal chamber, two sluice valves provided apart from each other between the film formation chamber and the removal chamber, and a shadow mask transfer mechanism. The film formation chamber includes an evaporation source, and the removal chamber includes a parallel plate plasma source and a shadow mask stage. The film formation apparatus has a film formation mode in which a shadow mask overlapped with an object is transferred by the shadow mask transfer mechanism and a film is formed on the object; and a cleaning mode in which the shadow mask is irradiated with plasma by the plasma source, the shadow mask being held between an upper electrode and a lower electrode by the shadow mask stage.
Abstract:
In order to provide a highly reliable organic EL element, a first step in which a deposition material is heated and vaporized in a deposition chamber in which the pressure is reduced and a second step in which a layer included in an EL layer is deposited in the deposition chamber are performed while exhaustion is performed and the partial pressure of water in the deposition chamber is measured with a mass spectrometer. Alternatively, the deposition chamber in the deposition apparatus includes a deposition material chamber and is connected to an exhaust mechanism. The deposition material chamber is separated from the deposition chamber by a sluice valve, includes a deposition material holding portion including a heating mechanism, and is connected to a mass spectrometer and an exhaust mechanism.
Abstract:
A highly portable semiconductor device and the like providing improved browsability of display. Provided is a semiconductor device including a flexible display panel, a first housing supporting a first region of the display panel, a second housing supporting a second region of the display panel, and a flexible base material firmly attached to the first housing. The display panel can be deformed into an open position where the first and second regions are substantially on the same plane or into a folded position where the first and second regions overlap with each other. The second housing includes a groove portion where the flexible base material can partly slide. Part of the flexible base material is inserted into the groove portion in the open position. The part of the flexible base material which is inserted into the groove portion is at least partly withdrawn in a deformation into the folded position.