Abstract:
A semiconductor device includes a first source/drain structure having a first length in a horizontal direction, as viewed in a planar cross-sectional view, the horizontal direction being perpendicular to a vertical direction, a second source/drain structure having a second length in the horizontal direction, as viewed in the planar cross-sectional view, the second length being less than the first length, channels extending between the first source/drain structure and the second source/drain structure, the channels being spaced apart from each other in the vertical direction, at least one sacrificial pattern between adjacent ones of the channels, and a trench penetrating the channels and the at least one sacrificial pattern.
Abstract:
A method of fabricating a semiconductor device includes preparing a substrate including a first region and a second region, sequentially forming a first semiconductor layer and a second semiconductor layer on the first and second regions, patterning the first and second semiconductor layers to form a lower semiconductor pattern and an upper semiconductor pattern on each of the first and second regions, selectively removing the lower semiconductor pattern on the second region to form a gap region, and forming gate electrodes at the first and second regions, respectively.
Abstract:
A semiconductor device includes a substrate having a first region and a second region, a first MOS transistor including a first fin structure and a first gate electrode in the first region, the first fin structure having a first buffer pattern, a second buffer pattern, and a first channel pattern which are sequentially stacked on the substrate, and a second MOS transistor including a second fin structure and a second gate electrode in the second region, the second fin structure having a third buffer pattern and a second channel pattern which are sequentially stacked on the substrate. Related fabrication methods are also discussed.
Abstract:
A semiconductor device includes a first source/drain structure having a first length in a horizontal direction, as viewed in a planar cross-sectional view, the horizontal direction being perpendicular to a vertical direction, a second source/drain structure having a second length in the horizontal direction, as viewed in the planar cross-sectional view, the second length being less than the first length, channels extending between the first source/drain structure and the second source/drain structure, the channels being spaced apart from each other in the vertical direction, at least one sacrificial pattern between adjacent ones of the channels, and a trench penetrating the channels and the at least one sacrificial pattern.
Abstract:
A semiconductor device including an active pattern on a substrate and extending lengthwise in a first direction parallel to an upper surface of the substrate; a gate structure on the active pattern, the gate structure extending in a second direction parallel to the upper surface of the substrate and crossing the first direction; channels spaced apart from each other along a third direction perpendicular to the upper surface of the substrate, each of the channels extending through the gate structure along the first direction; a source/drain layer on a portion of the active pattern adjacent to the gate structure in the first direction, the source/drain layer contacting the channels; inner spacers between the gate structure and the source/drain layer, the inner spacers contacting the source/drain layer; and channel connection portions between each of the inner spacers and the gate structure, the channel connection portions connecting the channels with each other.
Abstract:
A field effect transistor includes a fin structure, having a sidewall, protruding from a substrate, and a device isolation structure on the substrate, the device isolation structure defining the sidewall of the fin structure, wherein the fin structure includes a buffer semiconductor pattern disposed on the substrate and a channel pattern disposed on the buffer semiconductor pattern, wherein the buffer semiconductor pattern has a lattice constant different from that of the channel pattern, and wherein the device isolation structure includes a gap-fill insulating layer, and includes an oxidation blocking layer pattern disposed between the buffer semiconductor pattern and the gap-fill insulating layer.
Abstract:
A semiconductor device including a semiconductor substrate including first regions and second regions, at least one of the first regions being disposed between adjacent second regions; a plurality of first gate structures on the first regions of the semiconductor substrate; and a plurality of second gate structures on the second regions of the semiconductor substrate, wherein each of the first and second gate structures includes a lower gate structure including a recess region defined by sidewalls and a bottom connecting the sidewalls; and an upper gate structure including a gap-fill metal pattern that fills the recess region of the lower gate structure, wherein the bottom of the lower gate structure included in the first gate structure has a thickness different from a thickness of the bottom of the lower gate structure included in the second gate structure, and wherein the gap-fill metal patterns of the first and second gate structures have top surfaces at substantially a same level.
Abstract:
A semiconductor device includes a substrate having a first region and a second region, a first MOS transistor including a first fin structure and a first gate electrode in the first region, the first fin structure having a first buffer pattern, a second buffer pattern, and a first channel pattern which are sequentially stacked on the substrate, and a second MOS transistor including a second fin structure and a second gate electrode in the second region, the second fin structure having a third buffer pattern and a second channel pattern which are sequentially stacked on the substrate. Related fabrication methods are also discussed.
Abstract:
A semiconductor device includes a substrate including first and second regions, a first transistor provided on the first region to include a first channel region protruding from the substrate, and a second transistor provided on the second region to include a second channel region and a gate electrode extending between the substrate and the second channel region. The first channel region may include a lower semiconductor pattern containing a different material from the second channel region and an upper semiconductor pattern containing the same material as the second channel region.
Abstract:
A method for forming a pattern of a semiconductor device and a semiconductor device formed using the same are provided. The method includes forming a buffer layer on a substrate, forming a channel layer on the buffer layer, forming support patterns penetrating the channel layer, and forming channel fin patterns and a buffer pattern by patterning the channel layer and the buffer layer. The channel layer includes a material of which a lattice constant is different from that of the buffer layer, and each of the channel fin patterns has both sidewalls that are in contact with the support patterns and are opposite to each other.