Abstract:
A semiconductor chip including a guard ring that surrounds edges of a semiconductor substrate, an internal circuit structure that is formed on the semiconductor substrate and that includes a memory cell array region and a peripheral circuit region, and a crack detection circuit that is located between the guard ring and the internal circuit structure and that detects whether a crack occurs. The semiconductor chip further includes first to fourth chamfer regions having different shapes and sizes depending on the position of a pad or the design arrangement of the internal circuit structure.
Abstract:
An integrated circuit of a semiconductor device is fabricated by forming patterns on a wafer in conformance with a layout of the patterns. A method for verifying the layout includes providing a virtual pattern on a predicted defect point in the layout, and identifying at least one pattern from among those of the layout using the virtual pattern. The predicted defect point corresponds to a weak point where it is determined in advance that a defect will occur when the layout is transcribed on a wafer. The identified pattern is a pattern that is adjacent to the virtual pattern in the layout.
Abstract:
A method for verifying mask data in a computing device includes receiving layout data, receiving mask data, determining an interaction number between a pattern corresponding to the layout data and a pattern corresponding to the mask data, and detecting an error of the mask data based on the interaction number.
Abstract:
A semiconductor device includes a substrate, an N-well area formed in the substrate, a first P-channel metal oxide semiconductor (PMOS) transistor having active regions formed in the N-well area, and a first N-channel metal oxide semiconductor (NMOS) transistor having active regions formed in the substrate. The first NMOS transistor includes a first N-type active region overlapping each of the substrate and the N-well area, when viewed from above a plane parallel to a top surface of the substrate.
Abstract:
An integrated circuit includes; a substrate including a single active region, a first active resistor formed on the substrate, and a transistor including a first junction area in the single active region. The first active resistor and the transistor are electrically connected through the first junction area. The first active resistor is formed between a first node and a second node included in the first junction area. The first node is connected to a first contact, and the second node is connected to a second contact.
Abstract:
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, a first metal layer, a peripheral circuit configured to control the memory cell array, a second metal layer, and a pad. The first metal layer is disposed on the memory cell array and includes a plurality of cell region interconnections connected to the memory cell array. The second metal layer is disposed on the peripheral circuit and includes a plurality of peripheral region interconnections connecting the peripheral circuit and the plurality of cell region interconnections. The pad is disposed on the second metal layer and exchanges data, an address, or a command with the peripheral circuit during operation of the device. The second metal layer is lower than the first metal layer relative to a substrate of the device.
Abstract:
Provided are semiconductor devices including a peripheral region and a cell region stacked thereon and a method of fabricating the same. The semiconductor device may include a peripheral region including a lower substrate and a peripheral circuit provided thereon and a cell region including an upper substrate and a cell array provided thereon. The cell region may be stacked on the peripheral region. When an operation signal is applied to the cell region from the peripheral region, at least a portion of the peripheral and cell regions may be used as a ground pattern applied with a ground signal, thereby being in an electrical ground state.
Abstract:
A semiconductor device includes a substrate, an N-well area formed in the substrate, a first P-channel metal oxide semiconductor (PMOS) transistor having active regions formed in the N-well area, and a first N-channel metal oxide semiconductor (NMOS) transistor having active regions formed in the substrate. The first NMOS transistor includes a first N-type active region overlapping each of the substrate and the N-well area, when viewed from above a plane parallel to a top surface of the substrate.
Abstract:
A memory device including a first memory cell array including first memory cells stacked vertically on a first memory cell array region of a top surface of a substrate; a second memory cell array including second memory cells stacked vertically on a second memory cell array region of the top surface; first word lines coupled to the first memory cells and including a subset of first word lines and remaining first word lines; second word lines coupled to the second memory cells and including a subset of second word lines and remaining second word lines; and a row decoder, including a plurality of merge pass transistors each commonly connected to a respective one of the subset of first word lines and a respective one of the subset of second word lines, disposed in a region of the top surface between the first and second cell array regions.