Abstract:
A memory system includes a central processing unit (CPU), a nonvolatile memory electrically coupled to the CPU and a main memory, which is configured to swap an incoming code page for a target code page therein, in response to a first command issued by the CPU. The main memory can be configured to swap the target code page in the main memory to the nonvolatile memory in the event a page capacity of the main memory is at a threshold capacity. The CPU may also be configured to perform a frequency of use analysis on the target code page to determine whether the target code page is to be swapped to the nonvolatile memory or discarded. The incoming code page may be provided by a disk drive storage device and the main memory may be a volatile memory.
Abstract:
A semiconductor device includes a first transistor comprising a first dielectric film on a substrate and a first work function metal film of a first conductivity type on the first dielectric film, a second transistor comprising a second dielectric film on the substrate and a second work function metal film of the first conductivity type on the second dielectric film, and a third transistor comprising a third dielectric film on the substrate and a third work function metal film of the first conductivity type on the third dielectric film. The first dielectric film comprises a work function tuning material and the second dielectric film does not comprise the work function tuning material. The first work function metal film has different thickness than the third work function metal film. Related methods are also described.
Abstract:
A semiconductor memory device includes a first memory area in the semiconductor memory device, and a second memory area in the semiconductor memory device. The second memory area is accessed independently of the first memory area based on a usage selecting signal. The first and second memory areas share command and address lines, and perform a rank interleaving operation based on the usage selecting signal.
Abstract:
An electronic device includes a memory controller; a first memory device coupled to the memory controller; a second memory device coupled to the memory controller, the second memory device being a different type of memory from the first memory device; and a conversion circuit between the memory controller and the second memory device. The memory controller is configured to send a first command and first data to the first memory device according to a first timing scheme to access the first memory device, and send a second command and a packet to the conversion circuit according to the first timing scheme to access the second memory device. The conversion circuit is configured to receive the second command and the packet, and access the second memory device based on the second command and the packet.
Abstract:
A nonvolatile memory device includes a memory cell array comprising memory cells connected to bit lines and word lines; a word line decoder configured to apply word line voltages to the word lines; a bit line selector configured to select at least one bit line of the bit lines; a control logic configured to control the word line decoder and the bit line selector so that write data is programmed in the memory cell array; and a sudden power off (SPO) detection circuit, wherein the SPO detection circuit comprises: a sensing cell; a first driver configured to provide a first voltage to the sensing cell; and a second driver configured to provide a second voltage to the sensing cell, wherein a program state of the sensing cell becomes different depending on an order or a time difference between the first driver and the second driver being powered off.
Abstract:
A memory system includes a central processing unit (CPU), a nonvolatile memory electrically coupled to the CPU and a main memory, which is configured to swap an incoming code page for a target code page therein, in response to a first command issued by the CPU. The main memory can be configured to swap the target code page in the main memory to the nonvolatile memory in the event a page capacity of the main memory is at a threshold capacity. The CPU may also be configured to perform a frequency of use analysis on the target code page to determine whether the target code page is to be swapped to the nonvolatile memory or discarded. The incoming code page may be provided by a disk drive storage device and the main memory may be a volatile memory.
Abstract:
An electronic device includes a memory controller; a first memory device coupled to the memory controller; a second memory device coupled to the memory controller, the second memory device being a different type of memory from the first memory device; and a conversion circuit between the memory controller and the second memory device. The memory controller is configured to send a first command and first data to the first memory device according to a first timing scheme to access the first memory device, and send a second command and a packet to the conversion circuit according to the first timing scheme to access the second memory device. The conversion circuit is configured to receive the second command and the packet, and access the second memory device based on the second command and the packet.