Abstract:
A cleaning device for a substrate transfer device comprises a traveling unit configured to travel along a rail having first and second areas, a rail unit including the rail and a rail structure disposed on the rail, and a rinsing unit including a suction part disposed on the rail and that rotates about a suction nozzle. When the rinsing unit is placed in contact with the rail structure, the suction part rotates about the suction nozzle.
Abstract:
A multi-window control method and an electronic device supporting the same is provided. The multi-window control method includes changing a size of at least one specific window among a plurality of windows, and altering a focus to the at least one specific window based on a changed size of the at least one specific window.
Abstract:
A method of fabricating a semiconductor device, the method including etching a portion of a substrate including a first region and a second region to form a device isolation trench; forming a device isolation layer defining active regions by sequentially stacking a first insulating layer, a second insulating layer, and a third insulating layer on an inner surface of the device isolation trench; forming word lines buried in the substrate of the first region, the word lines extending in a first direction to intersect the active region of the first region, the word lines being spaced apart from each other; forming a first mask layer covering the word lines on the substrate of the first region, the first mask layer exposing the substrate of the second region; forming a channel layer on the substrate of the second region; and forming a gate electrode on the channel layer.
Abstract:
Provided is a tray including a plate including a first region and a second region, a first groove on the first region of the plate and to which a stub is fixed, and a second groove on the second region of the plate and to which a grid holder is fixed, wherein the stub is configured to store test wafer pieces, and wherein the grid holder is configured to store a test sample.
Abstract:
A substrate analysis apparatus is provided. The substrate analysis includes: an interlayer conveying module configured to transport a first FOUP; an exchange module which is connected to the interlayer conveying module, and configured to transfer a wafer from the first FOUP to a second FOUP; a pre-processing module configured to form a test wafer piece using the wafer inside the second FOUP; an analysis module configured to analyze the test wafer piece; and a transfer rail configured to transport the second FOUP containing the wafer and a tray containing the test wafer piece. The wafer includes a first identifier indicating information corresponding to the wafer, the test wafer piece includes a second identifier indicating information generated by the pre-processing module which corresponds to the test wafer piece, and the analysis module is configured to analyze the first identifier and the second identifier in connection with each other.
Abstract:
An image sensor is provided. The image sensor includes a substrate in which a first photoelectric conversion element is disposed, the substrate having a first surface and a second surface opposite the first surface, pixel separation patterns extending from the first surface of the substrate into the substrate, surrounding the first photoelectric conversion element, and defining a first pixel region in the substrate, a first vertical gate structure which extends in the first pixel region from the first surface of the substrate into the substrate and comprises a first portion disposed in the substrate and a second portion disposed on the first surface of the substrate, a second vertical gate structure which extends in the first pixel region from the first surface of the substrate into the substrate and comprises a first portion disposed in the substrate and a second portion disposed on the first surface of the substrate.
Abstract:
Various examples of the present invention relate to an electronic device comprising: a graphic buffer for storing graphic information received from an application; a frame buffer for storing the graphic information to be displayed on a display; and a processor, wherein the processor is configured to: store, in the graphic buffer, first graphic information received from a first layer; store, in the frame buffer, second graphic information received from a second layer; store, in the frame buffer, the first graphic information stored in the graphic buffer; and simultaneously display the first graphic information and the second graphic information, stored in the frame buffer, through the display functionally connected with the processor. In addition, other examples identifiable through the specification are possible.
Abstract:
A semiconductor device including a substrate; a trench formed within the substrate; a gate insulating film formed conformally along a portion of a surface of the trench; a gate electrode formed on the gate insulating film and filling a portion of the trench; a capping film formed on the gate electrode and filling the trench; and an air gap formed between the capping film and the gate insulating film.
Abstract:
A semiconductor device is provided. The semiconductor device includes an upper interlayer insulating layer disposed on a substrate. A first electrode spaced apart from the upper interlayer insulating layer is disposed on the substrate. A contact structure penetrating the upper interlayer insulating layer is disposed on the substrate. An upper support layer having a first portion covering an upper surface of the upper interlayer insulating layer, to surround an upper side surface of the contact structure, and a second portion extending in a horizontal direction from the first portion and surrounding an upper side surface of the first electrode, is disposed. A dielectric conformally covering the first electrode and a second electrode on the dielectric are disposed.
Abstract:
A multi-window control method and an electronic device supporting the same is provided. The multi-window control method includes changing a size of at least one specific window among a plurality of windows, and altering a focus to the at least one specific window based on a changed size of the at least one specific window.