Abstract:
While suppressing the influence of voltage noise, the adjustment range of the power supply voltage generated based on the reference voltage is expanded. The semiconductor device includes a reference voltage generation circuit, a regulator, a buffer, and a voltage control circuit. The reference voltage generation circuit is configured to be able to adjust the reference voltage. The regulator is configured to be able to change the output ratio of the power supply voltage to the reference voltage based on the control signal. The semiconductor device further includes a voltage control circuit for outputting a voltage control signal to the regulator to switch the output ratio.
Abstract:
A resistance element includes a conductor, the conductor having a repeating pattern of: a first conductive layer formed on a first interlayer insulating layer on a semiconductor substrate; a second conductive layer formed on a second interlayer insulating layer different from the first interlayer insulating layer; and an interlayer conductive layer connecting the first conductive layer and the second conductive layer, and the second conductive layer has a resistance-value fluctuation characteristic opposite to a resistance-value fluctuation characteristic of the first conductive layer after a heat treatment.
Abstract:
Disclosed is a semiconductor device that suppresses stress-induced resistance value changes. The semiconductor device includes a resistance correction circuit. The resistance correction circuit includes a first resistor whose stress-resistance value relationship is a first relationship, a second resistor whose stress-resistance value relationship is a second relationship, and a correction section that controls the resistance value of a correction target resistor. The correction section detects the difference between the resistance value of the first resistor and the resistance value of the second resistor and corrects, in accordance with the result of detection, the resistance value of the correction target resistor.
Abstract:
A capless regulator circuit is provided. The regulator circuit includes a power transistor that controls the supply of current to an external output terminal connected to a load; a monitor transistor provided between the external output terminal and a reference voltage terminal to which a reference voltage is supplied, and through which a current corresponding to the voltage of the external output terminal flows; a first constant current source that is provided in series with the monitor transistor and generates a first voltage according to the difference between the first current and a first constant current; and a cascode circuit that generates a second voltage that amplifies the first voltage and supplies it to the gate of the power transistor.
Abstract:
A technique capable of detecting a substrate bias voltage at a low power consumption is provided. The technique including: a voltage boost circuit outputting a boost voltage based on a first clock signal having a first frequency; a voltage drop circuit outputting a drop voltage based on a second clock signal having a second frequency; and a logic circuit block comparing the first frequency and the second frequency and outputting a comparison result between the first frequency and the second frequency in accordance with predetermined criteria is provided.
Abstract:
There is provided a semiconductor device which can provide desired output characteristics suitable to applications. A semiconductor device 10 includes a temperature sensing unit 11 which generates an analog sensing signal corresponding to a temperature, and an AD converter unit 12 which converts the analog sensing signal into a digital output signal corresponding to an adjusted temperature change rate based on a temperature change rate adjustment signal for adjusting the temperature change rate. The temperature change rate refers to a change in a detected temperature per bit of a digital output signal.
Abstract:
The polysilicon resistance has a large resistance variation rate after the end of the mold packaging process. In order to enable high-precision trimming, it is desired to realize a resistance which is hardly affected by stress and temperature fluctuation generated in a substrate by a mold packaging process. A resistance element is formed in a plurality of wiring layers, and has a first conductive layer formed in a first wiring layer, a second conductive layer formed in a second wiring layer, and a repeating pattern of an interlayer conductive layer connecting the first conductive layer and the second conductive layer, and the interlayer conductive layer is formed of a plurality of types of materials.
Abstract:
A polycrystalline silicon resistor is large in coefficient of fluctuation in resistance between before and after the completion of a package molding process. To enable highly accurate trimming, it is desired to implement a resistor that is hardly subjected to stress produced in a substrate during a package molding process. A resistance element is formed of a plurality of wiring layers and has a repetitive pattern of a first conductive layer formed in a first wiring layer, a second conductive layer formed in a second wiring layer, and an interlayer conductive layer coupling the first conductive layer and the second conductive layer together.
Abstract:
A frequency-locked loop circuit includes: a digital control oscillator that generates a clock; and an FLL controller that generates a frequency control code to control an oscillation frequency of the clock. The FLL controller includes: a frequency comparison unit that compares a frequency of a clock generated by the digital control oscillator with a frequency of a multiplied reference clock; and a delay code control unit that generates, based on a comparison result of the frequency comparison unit, the frequency control code so that the frequency of the clock generated by the digital control oscillator matches the frequency of the multiplied reference clock. The frequency comparison unit determines the frequency of the clock by using first and second thresholds. The delay code control unit generates the frequency control code according to a determination of the frequency comparison unit and outputs the frequency control code to the digital control oscillator.
Abstract:
A semiconductor device includes a reference voltage generation circuit configured to generate reference voltages Va and Vb capable of adjusting a primary temperature characteristic, and an oscillation circuit configured to output an oscillation signal using the reference voltages Va and Vb, in which the oscillation circuit includes a frequency/current conversion circuit that is driven by the reference voltage Va and outputs a current Ie in accordance with a frequency of a feedback signal, a control voltage generation circuit configured to generate a control voltage in accordance with a potential difference between a voltage in accordance with the current Ie and the reference voltage Vb, a voltage control oscillation circuit configured to output the oscillation signal having a frequency in accordance with the control voltage, and a frequency division circuit configured to divide a frequency of the oscillation signal and output the resulting signal as the feedback signal.