Abstract:
A semiconductor device includes: a voltage generation unit that generates a first voltage having a first temperature characteristic; a constant voltage generation unit that generates a constant voltage; and an adjustment unit that generates a second voltage having a second temperature characteristic and a third voltage having a third temperature characteristic using the first voltage and the constant voltage. The constant voltage generation unit generates the constant voltage independently of the adjustment unit. One of the second and third temperature characteristics is an opposite characteristic to the first temperature characteristic. The device can also include a control unit that selects one of the second and third voltages in response to a predetermined setting value.
Abstract:
The polysilicon resistance has a large resistance variation rate after the end of the mold packaging process. In order to enable high-precision trimming, it is desired to realize a resistance which is hardly affected by stress and temperature fluctuation generated in a substrate by a mold packaging process. A resistance element is formed in a plurality of wiring layers, and has a first conductive layer formed in a first wiring layer, a second conductive layer formed in a second wiring layer, and a repeating pattern of an interlayer conductive layer connecting the first conductive layer and the second conductive layer, and the interlayer conductive layer is formed of a plurality of types of materials.
Abstract:
A polycrystalline silicon resistor is large in coefficient of fluctuation in resistance between before and after the completion of a package molding process. To enable highly accurate trimming, it is desired to implement a resistor that is hardly subjected to stress produced in a substrate during a package molding process. A resistance element is formed of a plurality of wiring layers and has a repetitive pattern of a first conductive layer formed in a first wiring layer, a second conductive layer formed in a second wiring layer, and an interlayer conductive layer coupling the first conductive layer and the second conductive layer together.
Abstract:
It is possible to flexibly respond to accuracy required for a temperature sensor. An oscillator 11 generates a clock signal. The oscillator 11 is configured to be capable of changing a relationship between a frequency of the clock signal and a temperature. A counter 13 is configured to count the clock signal generated by the oscillator 11 by using a reference signal having a frequency not changing depending on a temperature. A CPU 16 generates temperature information based on the relationship between the frequency of the clock signal and the temperature in the oscillator 11 and a count value of the counter 13. The control circuit 14 changes the relationship between the frequency of the clock signal and the temperature in the oscillator 11 when the counter 13 overflows.
Abstract:
A semiconductor device includes: a resistance R whose resistance value varies in response to a substrate temperature variation; a resistance corrector that is coupled in series with the resistance R and switches its resistance value by a preset resistance step width to suppress a resistance value variation of the resistance R; a first voltage generator for generating a first voltage that varies in response to the substrate temperature; a second voltage generator for generating second voltages Vf1 to Vfn−1 for specifying the first voltage at a point when a switching operation of the resistance value of the resistance corrector is performed; and a resistance switch unit for switching the resistance value of the resistance corrector by comparing the first voltage and the second voltages Vf1 to Vfn−1.