Abstract:
A semiconductor device according to an aspect of the present disclosure includes a semiconductor substrate having a first conductivity type and having a principal surface and a back surface, a silicon carbide semiconductor layer having the first conductivity type and disposed on the principal surface of the semiconductor substrate, a guard ring region having a second conductivity type and disposed within the silicon carbide semiconductor layer, a floating region having the second conductivity type and disposed within the silicon carbide semiconductor layer, a first electrode disposed on the silicon carbide semiconductor layer, and a second electrode disposed on the back surface of the semiconductor substrate, wherein the guard ring region and the floating region each include a pair of a high-concentration region having the second conductivity type and a low-concentration region having the second conductivity type.
Abstract:
A silicon carbide semiconductor device includes a transistor region, a diode region, a gate line region, and a gate pad region. The gate pad region and the gate line region are each disposed to be sandwiched between the diode region and the diode region, and a gate electrode on the gate pad region and the gate line region is formed on an insulating film formed on an epitaxial layer. Thus, breakdown of the insulating film in the gate region can be prevented without causing deterioration in quality of the gate insulating film, upon switching and avalanche breakdown.
Abstract:
A semiconductor device includes first and second second-conductivity-type region groups containing multiple second-conductivity-type regions that are disposed on a first silicon carbide semiconductor layer of a first conductivity type, arrayed in parallel following one direction with a space between each other, and first and second electrodes disposed on the first silicon carbide semiconductor layer and forming a Schottky junction with the first silicon carbide semiconductor layer. The first electrode covers a position where a distance from adjacent first and second second-conductivity-type regions included in a first second-conductivity-type region group, and a distance from a third second-conductivity-type region included in a second second-conductivity-type region group and adjacent to the first and second second-conductivity-type regions, are equal. A Schottky barrier between the first electrode and the first silicon carbide semiconductor layer is larger than a Schottky barrier between the second electrode and the first silicon carbide semiconductor layer.