Abstract:
In one embodiment, a charged particle beam writing apparatus includes a positioning deflector adjusting an irradiation position of a charged particle beam radiated to a substrate which is a writing target, a fixed deflector which is disposed downstream of the positioning deflector in a traveling direction of the charged particle beam, and in which an amount of deflection is fixed, a focus correction lens performing focus correction on the charged particle beam according to a surface height of the substrate, and an object lens focusing the charged particle beam.
Abstract:
A multi charged particle beam writing apparatus includes a stage to mount a target object thereon and to be movable, an emission unit to emit a charged particle beam, an aperture member, in which a plurality of openings are formed, to produce multiple beams by letting a region including the whole of a plurality of openings be irradiated with the charged particle beam and letting portions of the charged particle beam respectively pass through a corresponding opening of a plurality of openings, a reduction optical system to reduce the multiple beams, and a doublet lens, arranged at the subsequent stage of the reduction optical system, in which a magnification is 1 and directions of magnetic fluxes are opposite.
Abstract:
According to one embodiment of the present invention, a mounting substrate is installed on a multi charged particle beam irradiation apparatus, and a blanking aperture array chip provided with blanking electrodes to perform blanking deflection on beams in a multi charged particle beam is mounted on the mounting substrate. The mounting substrate includes an opening through which the multi charged particle beam passes, a plurality of control circuits that supply a control signal to the blanking electrodes for each of a plurality of areas into which the blanking aperture array chip is divided, and grounds, each of which is provided for a corresponding one of the plurality of control circuits and configured to supply a ground electrical potential to the corresponding control circuit. The grounds corresponding to the control circuits are electrically separated from each other.
Abstract:
In one embodiment, a multi charged particle beam writing apparatus includes a blanking aperture array substrate provided with a plurality of blankers configured to respectively perform blanking deflection on a plurality of charged particle beams included in a multi-beam, and a first shield member which is disposed downstream of the blanking aperture array substrate with respect to a travel direction of the multi-beam, has a cylindrical part in which the multi-beam passes through, and is composed of a high magnetic permeability material.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A charged particle beam writing method includes forming an aperture image by making a charged particle beam pass through an aperture substrate, changing, in the state where a plurality of crossover positions of the charged particle beam and positions of all of one or more intermediate images of the aperture image are adjusted to matching positions with respect to the aperture image with the first magnification, magnification of the aperture image from the first magnification to the second magnification by using a plurality of lenses while maintaining the last crossover position of the charged particle beam and the position of the last intermediate image of the aperture image to be fixed, and forming, using an objective lens, the aperture image whose magnification has been changed to the second magnification on the surface of the target object, and writing the aperture image.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A multi charged particle beam writing apparatus includes a stage to mount a target object thereon, an emission unit to emit a charged particle beam, an aperture member, in which a plurality of openings are formed, to form a multibeam by letting a region including a whole of the plurality of openings be irradiated with the charged particle beam and letting portions of the charged particle beam respectively pass through a corresponding opening of the plurality of openings, a plurality of electromagnetic lenses, directions of whose magnetic fields are opposite, and three or more electrostatic lenses, at least one of which is arranged in each of the magnetic fields of a plurality of electromagnetic lenses and one or more of which also serve as deflectors for collectively deflecting the multibeam onto the target object.
Abstract:
In one embodiment, a multi charged particle beam writing method includes forming a multi charged particle beam with which a substrate serving as a writing target is irradiated, deflecting the multi charged particle beam to a position with a predetermined deflection offset added so that deflection voltages respectively applied to a plurality of electrodes of an electrostatic positioning deflector does not include a state where all the deflection voltages are zero, and irradiating the substrate with the multi charged particle beam. A positive common voltage is added to the deflection voltages which are applied to the respective electrodes of the electrostatic positioning deflector.
Abstract:
A blanking device for multi charged particle beams includes a first substrate, in which plural first openings are formed in an array, to form multi-beams, a second substrate in which plural second openings are formed in an array, where a corresponding beam of the multi-beams passes through each of the plural second openings, plural control electrodes, which are on the second substrate and each of which is close to a corresponding one of the plural second openings and arranged not to be directly exposed to other second opening adjacent to the corresponding one of the plural second openings, to be switchably applied with first and second potentials, plural counter electrodes, each of which is facing a corresponding one of the plural control electrodes, to be applied with the second potential, and a shield film provided between the first substrate and the plural control electrodes.