Abstract:
In one embodiment, a multi-beam writing method is for dividing a writing region of a substrate into multiple stripe regions, and writing each stripe region with a predetermined within-stripe multiplicity of N, where N is an integer greater than 1. The multi-beam writing method includes generating M different types of segments that define a shot order for multiple pixels belonging to each of multiple cells into which the stripe region is divided, the M being an integer greater than 1, irradiating the multiple pixels in the cell with a first individual beam using (m−1)th segment, where m is an integer such that 2≤m≤M, then irradiating the multiple pixels in the cell with a second individual beam different from the first individual beam using mth segment, and writing all pixels in each cell with the multiplicity of N by repeating irradiation sequentially using the M types of segments.
Abstract:
An electron beam writing apparatus comprising, a cathode configured to emit an electron beam, a condition controller configured to change a condition under which the electron beam is emitted from the cathode in a plurality of ways, and a prediction unit configured to predict a life span of the cathode based on a temporal change in an amount of fluctuation of a beam characteristic of the electron beam to a change in the condition when the condition is changed.
Abstract:
A writing apparatus of the embodiments of the present invention is a writing apparatus that irradiates a predetermined position on an irradiation target with multiple charged particle beams to write a predetermined pattern on the irradiation target, the apparatus comprising: a beam generation mechanism configured to generate multiple charged particle beams; a blanking aperture mechanism configured to perform blanking control of the generated multiple charged particle beams; a stage configured to have the irradiation target mounted thereon and to be movable; and a controller configured to control the writing apparatus, wherein the controller controls the blanking aperture mechanism and the stage to move the stage in an in-plane direction of a surface of the irradiation target during a blanking period in preparatory phase for writing.
Abstract:
An electron beam writing apparatus comprising a stage that a sample is placed on, an electron optical column, an electron gun emitting an electron beam disposed in the optical column, an electrostatic lens provided with electrodes aligned in an axial direction of the electron beam disposed in the optical column, and a voltage supply device for applying positive voltage constantly to the electrostatic lens. A shield plate is disposed between the XY stage and the electron optical column to block reflected electrons or secondary electrons generated by irradiation to the sample with the electron beam. The electrostatic lens is disposed immediately above the shield plate to change a focal position of the electron beam. A voltage supply device applies a positive voltage constantly to the electrostatic lens.
Abstract:
A charged particle beam writing apparatus includes a writer writing a pattern on a surface of a substrate using a charged particle beam, a measurement unit measuring a height of the surface of a central portion of the substrate at a plurality of positions in the central portion, a generator performing fitting using a first polynomial on measurement values from the measurement unit, calculating, by extrapolation using the first polynomial, a first height distribution of the height of the surface of a peripheral portion of the substrate, performing fitting using a second polynomial, which is of a higher order than the first polynomial, on the measurement values, calculating a second height distribution of the height of the surface of the central portion by interpolation using the second polynomial, and generating a height distribution of the substrate by combining the first height distribution and the second height distribution, and a controller adjusting a focal position of the charged particle beam based on the height of the surface at a writing position, the height being calculated from the height distribution of the substrate.
Abstract:
A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam.
Abstract:
A writing apparatus irradiates a predetermined position on an irradiation target with multiple charged particle beams to write a predetermined pattern on the irradiation target. The writing apparatus includes a beam generation mechanism generating multiple charged particle beams; a blanking aperture mechanism comprising a limiting aperture substrate shielding the generated multiple charged particle beams and a deflector deflecting the multiple charged particle beams in a predetermined direction, and blanking the multiple charged particle beams; a stage having the irradiation target mounted thereon and being movable; a driver moving the limiting aperture substrate; and a controller controlling the writing apparatus. The controller moves the limiting aperture substrate from an arrangement location at the time of writing in a plane perpendicular to an axial direction of the multiple charged particle beams in a blanking period, and returns the limiting aperture substrate to the arrangement location at the time of writing.
Abstract:
The purpose of the present invention is to correct a beam irradiation position shift caused by charging phenomena with high accuracy. A charged particle beam writing method includes virtually dividing a writing region of the substrate so as to have a predetermined mesh size and calculating a pattern density distribution representing an arrangement ratio of the pattern for each mesh region, calculating a dose distribution using the pattern density distribution, calculating an irradiation amount distribution using the pattern density distribution and the dose distribution, calculating a fogging charged particle amount distribution, calculating a charge amount distribution due to direct charge and a charge amount distribution due to fogging charge, calculating a position shift of a writing position based on the charge amount distribution due to direct charge and the charge amount distribution due to fogging charge, correcting an irradiation position using the position shift, and irradiating the corrected irradiation position with the charged particle beam with which a potential of a surface of the substrate becomes higher than a potential of a bottom surface of ae potential regulation member.
Abstract:
In one embodiment, a multi-charged-particle-beam writing method includes dividing a data path into a plurality of first blocks based on at least either one of each of a plurality of input/output circuits and a plurality of wiring groups, and calculating a first shift amount for multiple beams for each of the plurality of first blocks. The data path is for inputting control data to a cell array on a blanking aperture array substrate. The control data is for controlling ON/OFF of each beam of the multiple beams. Each of the plurality of wiring groups includes a plurality of pieces of wiring connected to the plurality of input/output circuits and grouped together based on inter-wiring distance. The first shift amount is due to at least one of an electric field and a magnetic field for each of the plurality of first blocks. An irradiation position or a dose of the multiple beams is corrected based on the first shift amount, and irradiation is performed.
Abstract:
A charged particle beam writing method includes acquiring the deviation amount of the deflection position per unit tracking deflection amount with respect to each tracking coefficient of a plurality of tracking coefficients having been set for adjusting the tracking amount to shift the deflection position of a charged particle beam on the writing target substrate in order to follow movement of the stage on which the writing target substrate is placed, extracting a tracking coefficient based on which the deviation amount of the deflection position per the unit tracking deflection amount is closest to zero among the plurality of tracking coefficients, and writing a pattern on the writing target substrate with the charged particle beam while performing tracking control in which the tracking amount has been adjusted using the tracking coefficient extracted.