Abstract:
III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
Abstract:
The present III-nitride crystal manufacturing method, a method of manufacturing a III-nitride crystal (20) having a major surface (20m) of plane orientation other than {0001}, designated by choice, includes: a step of slicing III-nitride bulk crystal (1) into a plurality of III-nitride crystal substrates (10p), (10q) having major surfaces (10pm), (10qm) of the designated plane orientation; a step of disposing the substrates (10p), (10q) adjoining each other sideways in such a way that the major surfaces (10pm), (10qm) of the substrates (10p), (10q) parallel each other and so that the [0001] directions in the substrates (10p), (10q) are oriented in the same way; and a step of growing III-nitride crystal (20) onto the major surfaces (10pm), (10qm) of the substrates (10p), (10q).
Abstract:
A nitride semiconductor substrate having properties preferable for the manufacture of various nitride semiconductor devices is made available, by specifying or controlling the local variation in the off-axis angle of the principal surface of the nitride semiconductor substrate. In a nitride semiconductor single-crystal wafer having a flat principal surface, the crystallographic plane orientation of the principal surface of the nitride semiconductor single-crystal wafer varies locally within a predetermined angular range.
Abstract:
The present III-nitride crystal manufacturing method, a method of manufacturing a III-nitride crystal (20) having a major surface (20m) of plane orientation other than {0001}, designated by choice, includes: a step of slicing III-nitride bulk crystal (1) into a plurality of III-nitride crystal substrates (10p), (10q) having major surfaces (10pm), (10qm) of the designated plane orientation; a step of disposing the substrates (10p), (10q) adjoining each other sideways in such a way that the major surfaces (10pm), (10qm) of the substrates (10p), (10q) parallel each other and so that the [0001] directions in the substrates (10p), (10q) are oriented in the same way; and a step of growing III-nitride crystal (20) onto the major surfaces (10pm), (10qm) of the substrates (10p), (10q).
Abstract:
III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
Abstract:
A nitride semiconductor substrate having properties preferable for the manufacture of various nitride semiconductor devices is made available, by specifying or controlling the local variation in the off-axis angle of the principal surface of the nitride semiconductor substrate. The substrate, being misoriented, is manufactured to have an off-axis angle distribution across its principal surface such that variation Δθ in the off-axis angle is continuous within a predetermined angular range.
Abstract:
A nitride semiconductor substrate having properties preferable for the manufacture of various nitride semiconductor devices is made available, by specifying or controlling the local variation in the off-axis angle of the principal surface of the nitride semiconductor substrate. In a nitride semiconductor single-crystal wafer having a flat principal surface, the crystallographic plane orientation of the principal surface of the nitride semiconductor single-crystal wafer varies locally within a predetermined angular range.
Abstract:
This III-nitride single-crystal growth method, being a method of growing a AlxGa1-xN single crystal (4) by sublimation, is furnished with a step of placing source material (1) in a crucible (12), and a step of sublimating the source material (1) to grow AlxGa1-xN (0
Abstract translation:作为通过升华生长Al x Ga 1-x N单晶(4)的方法的III族氮化物单晶生长方法具有将源材料(1)放置在坩埚(12)中的步骤,并且 使源材料(1)升华以在坩埚(12)中生长Al x Ga 1-x N(0