Abstract:
A semiconductor package includes a substrate, a first insulation layer, a conductive pad, a second insulation layer and a conductive trace. The first insulation layer is formed on the substrate and having a first through hole. The conductive pad is formed on the substrate through the first through hole. The second insulation layer has a first surface and a second through hole, wherein the second through hole extends to the conductive pad from the first surface. The conductive trace has a second surface and is connected to the conductive pad through the second through hole. The entire of the first surface is in the same level, and the entire of the second surface is in the same level.
Abstract:
A semiconductor device includes a semiconductor component and a silicon-based passive component. The silicon-based passive component is stacked on the semiconductor component in a thickness direction of the semiconductor component.
Abstract:
A semiconductor package includes a substrate, a first insulation layer, a conductive pad, a second insulation layer and a conductive trace. The first insulation layer is formed on the substrate and having a first through hole. The conductive pad is formed on the substrate through the first through hole. The second insulation layer has a first surface and a second through hole, wherein the second through hole extends to the conductive pad from the first surface. The conductive trace has a second surface and is connected to the conductive pad through the second through hole. The entire of the first surface is in the same level, and the entire of the second surface is in the same level.
Abstract:
A semiconductor device includes a semiconductor substrate having a first conductivity type, a first well region formed in a portion of the semiconductor substrate, having a second conductivity type that is the opposite of the first conductivity type. A second well region is formed in a portion of the first well region, having the first conductivity type. A first gate structure is formed over a portion of the second well region and a portion of the first well region. A first doped region is formed in a portion of the second well region. A second doped region is formed in a portion of the first well region, having the second conductivity type. A second dielectric layer is formed over a portion of the first gate structure, a portion of the first well region, and a portion of the second doped region.
Abstract:
A MOS device with an isolated drain includes: a semiconductor substrate having a first conductivity type; a first well region embedded in a first portion of the semiconductor substrate, having a second conductivity type; a second well region disposed in a second portion of the semiconductor substrate, overlying the first well region and having the first conductivity type; a third well region disposed in a third portion of the semiconductor substrate, overlying the first well region having the second conductivity type; a fourth well region disposed in a fourth portion of the semiconductor substrate between the first and third well regions, having the first conductivity type; a gate stack formed over the semiconductor substrate; a source region disposed in a portion of the second well region, having the second conductivity type; and a drain region disposed in a portion of the fourth well region, having the second conductivity type.
Abstract:
A semiconductor device includes a semiconductor substrate having a well region and a gate structure formed over the well region of the semiconductor substrate. The semiconductor device also includes a gate spacer structure having a first spacer portion and a second spacer portion on opposite sidewalls of the gate structure. The semiconductor device also includes a source region and a drain region formed in the semiconductor substrate. The source region and a drain region are separated from the gate structure. The source region is adjacent to the first spacer portion of the gate spacer structure, and the drain region is adjacent to the second spacer portion of the gate spacer structure. The bottom width of the second spacer portion is greater than the bottom width of the first spacer portion.
Abstract:
A semiconductor package includes a substrate, a first insulation layer, a conductive via and a conductive trace. The substrate includes a conductive component. The first insulation layer is formed on the substrate and having a first through hole exposing the conductive component. The conductive via is formed within the first through hole. The conductive trace is directly connected to the conductive via which is located directly above the first through hole.
Abstract:
A semiconductor device capable of high-voltage operation includes a semiconductor substrate, a first well region, a second well region, a first gate structure, a first doped region, a second doped region, and a second gate structure. The first well region is formed in a portion of the semiconductor substrate. The second well region is formed in a portion of the first well region. The first gate structure is formed over a portion of the second well region and a portion of the first well region. The first doped region is formed in a portion of the second well region. The second doped region is formed in a portion of the first well region. The second gate structure is formed over a portion of the first gate structure, a portion of the first well region, and a portion of the second doped region.
Abstract:
A semiconductor device capable of high-voltage operation includes a semiconductor substrate having a first conductivity type. A first well doped region is formed in a portion of the semiconductor substrate. The first well doped region has a second conductivity type. A first doped region is formed on the first well doped region, having the second conductivity type. A second doped region is formed on the first well doped region and is separated from the first doped region, having the second conductivity type. A first gate structure is formed over the first well doped region and is adjacent to the first doped region. A second gate structure is formed beside the first gate structure and is close to the second doped region. A third gate structure is formed overlapping a portion of the first gate structure and a first portion of the second gate structure.
Abstract:
A semiconductor device includes a semiconductor substrate having a well region and a gate structure formed over the well region of the semiconductor substrate. The gate structure has a first sidewall and a second sidewall. The second sidewall is opposite the first sidewall. The semiconductor device also includes a gate spacer structure having two asymmetrical portions. One of the asymmetrical portions is formed on the first sidewall of the gate structure, and the other asymmetrical portion is formed on the second sidewall of the gate structure. The semiconductor device includes a source region and a drain region formed in the semiconductor substrate and aligned with the outer edges of the asymmetrical portions of the gate spacer structure. In some embodiments, the lateral distance between the drain region and the gate structure is greater than the lateral distance between the source region and the gate structure.