Abstract:
A semiconductor device includes a well region of a first conductivity type, having a first depth, formed in a substrate. A source contact region of a second conductivity type is formed in the well region. A drift region of the second conductivity type, having a second depth greater than 50% of the first depth, is formed in the substrate adjacent to the well region. A drain contact region of the second conductivity type is formed in the drift region. A gate electrode is formed on the substrate between the source contact region and the drain contact region. The drain contact region is spaced apart from the gate electrode and the source contact region is adjacent to the gate electrode. Furthermore, a method of fabricating a semiconductor device is also provided. The method includes performing a multi-step implantation process to form a drift region.
Abstract:
A method for fabricating a metal-oxide-semiconductor (MOS) device, performing operations of: forming a first well region embedded in a portion of a semiconductor substrate; forming a first patterned mask layer over the semiconductor substrate; performing a first ion implant process on two portions of the semiconductor substrate exposed by the first patterned mask layer; removing the first patterned mask layer and forming a second patterned mask layer over the semiconductor substrate, exposing a portion of the third well region; performing a second ion implant process to the portion of the third well region exposed by the second patterned mask layer; performing a third implant process to the portion of the third well region exposed by the second patterned mask layer; forming a source region in a portion of the third well region; and forming a drain region in a portion of the fifth well region.
Abstract:
A MOS device with an isolated drain includes: a semiconductor substrate having a first conductivity type; a first well region embedded in a first portion of the semiconductor substrate, having a second conductivity type; a second well region disposed in a second portion of the semiconductor substrate, overlying the first well region and having the first conductivity type; a third well region disposed in a third portion of the semiconductor substrate, overlying the first well region having the second conductivity type; a fourth well region disposed in a fourth portion of the semiconductor substrate between the first and third well regions, having the first conductivity type; a gate stack formed over the semiconductor substrate; a source region disposed in a portion of the second well region, having the second conductivity type; and a drain region disposed in a portion of the fourth well region, having the second conductivity type.