Abstract:
According to one embodiment, a magnetic memory device includes: a first magnetic layer; a nonmagnetic layer on the first magnetic layer; a second magnetic layer on the nonmagnetic layer; and an insulator film on the nonmagnetic layer surrounding a side surface of the second magnetic layer. The second magnetic layer has an area of a surface facing the nonmagnetic layer smaller than that of the nonmagnetic layer. The nonmagnetic layer includes a first region that is provided between the first magnetic layer and the insulator film. The first region includes an amorphous state.
Abstract:
According to one embodiment, a magnetic memory includes magnetoresistive effect elements each including a first magnetic layer, a tunnel barrier layer, and a second magnetic layer which are successively stacked, and a ferroelectric capacitor provided above the magnetoresistive effect elements via an insulating layer, and including a lower electrode, a ferroelectric film, and an upper electrode which are successively stacked.
Abstract:
According to one embodiment, a magnetoresistive effect element includes a first ferromagnetic layer, a tunnel barrier provided on the first ferromagnetic layer, and a second ferromagnetic layer provided on the tunnel barrier. The tunnel barrier includes a nonmagnetic mixture containing MgO and a metal oxide with a composition which forms, in a solid phase, a single phase with MgO.
Abstract:
According to an embodiment, a non-volatile memory device includes electrodes, an inter-layer insulating film between the electrodes and at least one semiconductor layer extending through the electrodes and the inter-layer insulating film. The device includes a charge storage layer between the semiconductor layer and each electrode, a first insulating film between the charge storage layer and the semiconductor layer, and a second insulating film. The second insulating film includes a first portion between the charge storage layer and each electrode, a second portion between each electrode and the inter-layer insulating film, and a third portion that links the first portion and the second portion. In a cross-section of the third portion parallel to the first direction and a second direction toward each electrode from the charge storage layer, a curved surface on the charge storage layer side has a curvature radius larger than a surface on the electrodes side.
Abstract:
According to one embodiment, a magnetoresistive effect element includes the following structure. A first ferromagnetic layer has a variable magnetization direction. A second ferromagnetic layer has an invariable magnetization direction. A tunnel barrier layer is formed between the first and second ferromagnetic layers. An energy barrier between the first ferromagnetic layer and the tunnel barrier layer is higher than an energy barrier between the second ferromagnetic layer and the tunnel barrier layer. The second ferromagnetic layer contains a main component and an additive element. The main component contains at least one of Fe, Co, and Ni. The additive element contains at least one of Mg, Al, Ca, Sc, Ti, V, Mn, Zn, As, Sr, Y, Zr, Nb, Cd, In, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, and W.
Abstract:
According to one embodiment, a semiconductor memory device includes a stacked body; a semiconductor body; and charge storage film. The stacked body includes the plurality of electrode layers separately stacked each other. The semiconductor body is provided in the stacked body and extends in a stack direction of the stacked body and includes an oxide semiconductor. The charge storage film is provided between the semiconductor body and the plurality of electrode layers.
Abstract:
According to one embodiment, a semiconductor memory device includes a stacked body; a semiconductor body; and charge storage film. The stacked body includes the plurality of electrode layers separately stacked each other. The semiconductor body is provided in the stacked body and extends in a stack direction of the stacked body and includes an oxide semiconductor. The charge storage film is provided between the semiconductor body and the plurality of electrode layers.
Abstract:
According to one embodiment, a magnetoresistive effect element includes a first ferromagnetic layer, a tunnel barrier formed on the first ferromagnetic layer, and a second ferromagnetic layer formed on the tunnel barrier layer. The tunnel barrier includes a nonmagnetic oxide having a spinel structure. Oxides forming the spinel structure are combined such that a single phase is formed by a solid phase in a component ratio region including a component ratio corresponding to the spinel structure and having a width of not less than 2%.